22 1 Ò Ä Vol. 22 No. 1 2014 ý 2 TORPEDO TECHNOLOGY Feb. 2014 鱼雷水声同步定位系统抗定位距离模糊算法及仿真, ( Àh 91388, þ, 524022) : æ åp é Ïåp Ê, e Ï åp åp, Š eåp š, eêf ý åp x ø å p, ý em m, ƒ Î l p w n, ž åp Ê Ê Ïåp åp å tz ºÀ : ; Ï åp ; åp ; ; ø; f É ú: TJ630.2; TB52.9 h u: A ú: 1673-1948(2014)01-0030-05 Anti Positioning Range Ambiguity Algorithm with Simulation for Underwater Synchronous Acoustic Positioning System of Torpedo YANG Zhi-quan, SHANG Fan (91388 th Unit, The People s Liberation Army of China, Zhanjiang 524022, China) Abstract: The reason why positioning range ambiguity problem is created in an underwater synchronous acoustic positioning system of torpedo is analyzed, and an anti positioning range ambiguity algorithm is proposed to completely solve this problem. Accordingly, a quic positioning method is proposed for the underwater synchronous acoustic positioning system of torpedo based on the horizontal equidistant line array technology and the correlative wave gate technology for correcting time-delay difference. Simulation result shows that this method has such advantages as less addition in hardware cost, non-exhaustion of all fuzzy solutions, and non-prior position information. It may be applied to eliminating range ambiguity and locing traced target in design of medium- and long-range positioning system of torpedo, and to design of short/ultra-short baseline underwater acoustic positioning system. Keywords: torpedo; underwater synchronous acoustic positioning system; anti positioning range ambiguity algorithm; horizontal equidistant line array; time-delay difference; correlative wave gate 0 Ï åp ü øq, åp qïw ¼Ã Àå ü T, åp qïw Œ, Ï w ŸŒ åp Œ ¼ {ì wÿ n t r, [1] r = ct r (1), c Ï, œ{ À [0, T ), À, ê Š wÿ e Œ, u åp, p ì å, ì Ï { 2013-08-12; 2013-09-17. ~v (1971-),, Ï, ø ú, Ïø. 30 Torpedo Technology www.yljszz.cn
2014 ý 2, : Ï åp åp œm 1 åp åp Š e ƒ åp, Î l ž p w Ï åp, ý matlab ÿm ž 1 ºq ƒ y û Ï åp ž, åp Š l l [2] 1.1 l ƒæ l «ë ø Ñã Á û š Ïw Ï, 2 wÿš û, z f û å l wÿœê, Î e lð, Ñe Ñ å p, ž å Ƀ åp, pý j åp 1.2 l ƒæ l Ÿ Êf p w œ p Î lð påpæ l, œ p p l, é å p Ð åp à í 2 ƒ y ÁÈÉ, g åp æ Œ ê Ò Š ž, Õ Ï åp, ý (1) l åp, ž Á Ïåp Ï c ž ü, Ñ [3] ( ) ru max = c ì T T å ž, Õ ž Œ u Ïåp Æ, ìžj s (1) åp g åp 3 p}  qü ƒ Œ Ïåp i { t i, www.yljszz.cn 31 t i, ij ti tj τ = (2) ij t i t j τ = (3) ni = ti / T (4) ij ij i j τ = τ ( w n = n ) (5) ÿ œ (5), ¼ { ž ÿ Ò {, pž, Œ i, j øτ ij ÁÑ Š åp ƒìž øτ ij 3.1 åpš ø, åp ž åp, À 1 åp š À M(, r θ ) à åp, 1, 2, 3 Š åp uù 3 d, θ, Œ Š r 1, r, r 3, Š t 1, t, r r t 2, 3 1 µ} Âü ƒ Fig. 1 Simultaneous localization model with 3-sensor equidistant line array Á M å ý ƒ, q å ž r1 = r + d 2rdcosθ (6) r3 = r + d + 2rdcosθ (7) = (6), (7) e cos(π θ) cosθ (7)
2014 ý 1 22 2 1 3 2 2 θ = 3 1 2( r + d ) = r + r 4rd cos r r (8) Ï c, wÿœ 1, 2 œ 2, 3 øš τ τ = t t r = r+ cτ = t t r = r cτ 12 1 2 1 12 23 2 3 3 23 (9) (8), ý e cτ 12 = f cτ 23 2d e f r = 2( e f) (9) =, (10) e+ f e f cos θ = (1 + ) (11) 2d 2r (11)œœq, θ, e+ f e f θ π arccos 1+ 2d 2r (12) à (, r θ ) à ( xy, ) = ( rcos θ, ± rsin θ) (13) : 1) θ œ{ (0, π), æ Á fåp ø ø š sτ 12 = τ 23, (10), r Áτ 12 = τ 23 å, ; 2) (10)~ (12) (, r θ ) áá øÿ, æ ä (13) Ÿe ; 3) (13) à 2 š ý Ã, éã, Ê, å p ÑÂà à ý ; 4) 3D åp, åp Á ä, z à ( ), ø åp (, r θ ), c d ž ü, (, r θ ) ž ø ž ø, Ñë n, åp 3.2 (2)~ (5)ž, Á Œ, i, j, Œ wÿ îf œ, (3) øê, ì ø Ò, ƒ Ð ø ý x, ü x å, j æ åp qœ ü [4] t, hlê 2 œê Š ý,, wÿð u Á ƒ ì ÿ ÕÐ Œ Ð h ý é Ï åp, Ò wÿd ý f, åp Œ ød, ž ød, ž ø ÿ [5] : ø ÿ, ž å ø {, ÿ { { åp, j s ø Ò åp êfï, žê Á ê ƒ, é ø 2 ø τ 1 τ 0, Ñ ø τ max, é øτ lž τ τ0 τmax (14) τ τ 0 n ø n τn = n( τ τ ) + τ (15) 0 1 0 4 {sí Matlab ÿ m { Ï åp 3 ýê ( 15 m) ÃÐf q, Ïw ý T = 0.1 s œê 100 Hz ping ÏwŸ, Ø Œ Ï åp ýê š ÑÂÃ, w 20 m/s M 0 ( 105 m, 240 m) à (75 m, 0) ; Ï åp ý Ê 5 m/s X, Ï c= 1 500 m/s, Ñ r u max = c T = 150 m, 32 Torpedo Technology www.yljszz.cn
2014 ý 2, : Ï åp åp œm 1 éfšåp, M 0 š 261.96 m> 150 m, pfåp É m ÿ Œ p åp p ( T, l q), u 3.1 åp, 3.2 ü x, Á à åp À é ÀÕ, à à À 2ž, m Ø 0 ~5 s, { ë 1 0.1 s, ÿ ; Á 5 ~7 s u œ ÿ, { À 3 ž, øiá 5~7 s g Ò, é x ( À 4), 5~7 s øò ù À 5 3.1 åp à À, ž ù e Œ ê À 6 À 7 ÑÂà åp 4 n Á ýq Fig. 4 Time-delay difference corrected by wave gate technology 2 µ 1~3 Íq Fig. 2 Received time-delay from array elements 1 to 3 5 ~Çqr ±² É [W1] Fig. 5 Target trajectory polar coordinates(r, θ) resolved by system é À é ž, ý åp x ø ž Õ Â Ï åp åp, À 7 Ÿ ê œ øÿ, Áæ ÿ nœ, Áæ åp øu n ŒŸ wÿ, m Œ 3 µ 1, 2 2, 3 iâq Fig. 3 Time-delay differences between array elements 1 and 2, and 2 and 3 6 n Á q ƒ±² Fig. 6 Positioning trajectory diagram without using correlative wave gate technology www.yljszz.cn 33
2014 ý 1 22 ÿ õ h: 7 Fig. 7 n}   Á q ƒ±² Positioning trajectory diagram with applications of equidistant line array and time wave gate technology 5 Š e Ïåpÿ g åp š, eêf ý åp x ø Ï åp åp, ýj e åp øqš Matlab m åp é, ž, Ï åp ƒ Î l p w n, ž åp Ê Ê Ïåp åp æ å tz, ƒ Õ [1] â. Ïø [M]. : ã, 2002. [2] À,,,. Ï åp l [J]. ÿ Ïã, 2005, 24(5): 301-303. Liang Guo-Long, Yang Chun, Chen Xiao-Zhong, et al. On Resolving Range Ambiguities by Software in Synchronous Underwater Acoustic Tracing System[J]. Applied Acoustics, 2005, 24(5): 301-303. [3], ÏÂ,,.ÿ Ïåp æ [J]. Ïãã, 1996, 21(3): 265-271. Xu Xin-sheng, Ding Shi-qi, Li Hai-sen, et al. Analysis and Implementation of Cross sync-period Underwater Acoustical Positioning for Underwater Targets[J]. Acta Acustica, 1996, 21(3): 265-271. [4] fó. Ã Ñ œ æ [J]. ø ã ã, 2000, 12(2): 32-35. Wang Yun-feng. Radar Multi-target Tracing and Its Realization[J]. Journal of Ordnance Engineering College, 2000, 12(2): 32-35. [5]. œ ÿ [J]., 2002(6): 17-19. Zhu Guang-hua. Technology of Trac-while-Scan and It s Application[J]. Modern Radar, 2002(6): 17-19. («{ ±: ) ê 1. Ñ AUV åp., ê,. 2013, 21(5). 2. Ê åp USV n. n,. 2013, 21(4). 3. ê åp., Å. 2013, 21(4). 4. Êf o EKF Ê AUV ê.,,. 2012, 20(6). 5. ê åp. žý, ó,. 2012, 20(4). 6. Êf êfd œêâï åpn.,. 2012,03 7. w x AUV åp ø.,. 2012, 20(1). 8. Êf êfdo œêâï åpn.,,. 2011, 19(6). 9. Êf ë UUV åp., v,,. 2011, 19(3). 10. ÊfœÁÉ AUV ê åp. ä,,,. 2011, 19(1). 11. Êf GDOP åp ø œêâï.,,. 2009, 17(3). 12. ÑÊÂÏ o åp. â, v,,. 2009, 17(2). 34 Torpedo Technology www.yljszz.cn