Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen Un

Similar documents


!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * **

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

&! +! # ## % & #( ) % % % () ) ( %

TestNian

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

08-01.indd

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π


& & ) ( +( #, # &,! # +., ) # % # # % ( #

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

汽车轻量化技术创新战略联盟

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

untitled

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

( ) (! +)! #! () % + + %, +,!#! # # % + +!

untitled

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

untitled

: ; # 7 ( 8 7

Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

untitled

untitled

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

9 : : ; 7 % 8

; < 5 6 => 6 % = 5

% % %/ + ) &,. ) ) (!

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

投影片 1

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

8 8 Β Β : ; Χ; ; ; 8 : && Δ Ε 3 4Φ 3 4Φ Ε Δ Ε > Β & Γ 3 Γ 3 Ε3Δ 3 3 3? Ε Δ Δ Δ Δ > Δ # Χ 3 Η Ι Ι ϑ 3 Γ 6! # # % % # ( % ( ) + ( # ( %, & ( #,.

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

1#

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

6 2016/5/ /6/19 z B (HDM) (CDM) CDM (Λ = 0) (k = +1) Friedmann ( ) dr 2 = Rmax R R 2 (4.1) dθ R(θ) = R max 2 t(θ) = R max 2c (1 cos θ), (4.2) (θ

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

1 <9= <?/:Χ 9 /% Α 9 Δ Ε Α : 9 Δ 1 8: ; Δ : ; Α Δ : Β Α Α Α 9 : Β Α Δ Α Δ : / Ε /? Δ 1 Δ ; Δ Α Δ : /6Φ 6 Δ

スライド 1

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

untitled

(Microsoft PowerPoint - 07_2_20_SP8\203\217\201[\203N\203V\203\207\203b\203v\217\254\227\321\220\263\230a.ppt)

3?! ΑΑΑΑ 7 ) 7 3

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

untitled

(creep) 500~ ~ 30 MPa 9Cr-1Mo 100 MPa ( ) 9Cr-1Mo Threshold Stress Larson-Miller Manson-Haferd Ω

Microsoft PowerPoint - pmoon_ NYUSH_UG

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1

Ε? Φ ) ( % &! # +. 2 ( (,

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

Probabilities of Default RMI PDs CVI 7-8 KMV 9 KMV KMV KMV 1. KMV KMV DPT DD DD DD DPT Step 1 V E = V A N d 1 - e rt DN d 2 1 d 1 = ln V A

第 23 卷 第 1 期 田 素 贵, 等 : 热 处 理 制 度 对 GH4169G 合 金 微 观 组 织 与 蠕 变 性 能 的 影 响 109 响, 当 δ 相 析 出 量 较 大 时, 将 消 耗 大 量 的 元 素 Nb, 致 使 近 晶 界 区 域 γ 和 γ" 相 贫 化, 降 低

,, ( Δ! # % & % ) % & )% % +, % &. + / +% % % +,. / )% )%. + /. /. 0 / +% )0 )1 2) 20 )1 % 4 0 % % 0 5 % % )) % %6 ) % 6 ) % % % ) % 6. 4 /. 2 %, 78 9

% & ( ) +, (

《分析化学辞典》_数据处理条目_1.DOC

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 %


# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /

= 6 = 9 >> = Φ > =9 > Κ Λ ΘΠΗ Ρ Λ 9 = Ρ > Ν 6 Κ = 6 > Ρ Κ = > Ρ Σ Ρ = Δ5 Τ > Τ Η 6 9 > Υ Λ Β =? Η Λ 9 > Η ς? 6 = 9 > Ρ Κ Φ 9 Κ = > Φ Φ Ψ = 9 > Ψ = Φ?

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

Transcription:

Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen University LIU Rendong WANG Xu Ansteel XIONG Xiaochuan General Motors Automotive steel workshop 2014 1

Introduction Deformation twinning TWIP steels 1800 Fe17Mn0.95C Fe12Mn1.2C True stress (MPa) Fe22Mn1.2C Fe30Mn1C Fe22Mn0.6C Fe30Mn0.5C 1200 Fe30Mn 600 0 0.0 0.1 0.2 0.3 0.4 True strain TWIP steels for automotive applications 2

Review on strain rates effects σ D TWIP steels ε Experimental data for pure Cu Gray 3

Experiments Material Fe Mn C Al Si wt (%) Bal. 18 0.6 1.5 0.8 Mechanical tests Quasi-static tensile tests (10-3 to 10-2 s -1 ) =20 µm; IPF Z0; Step=0.5 µm; Grid200x200 20 um High strain rate tensile tests (10 1 to 10 3 s -1 ): Split Hopkinson bar system High pressure gas http://what-whenhow.com/dynamicbehavior-of-materials Microstructure characterization TEM for observing the dislocations and deformation twins Synchrotron X-ray diffraction for measuring the dislocation and twin density 3

Mechanical properties Strain rate: 5.7 10-4 to 3750 s -1 Engineering stress (MPa) 1200 1100 1000 900 800 700 600 500 (a) m I Yielding stress Ultimate tensile stress 80 Uniform elongation 70 60 50 40 dσ y = = 14.4MPa d lnɺ ε 400 20 1E-4 1E-3 0.01 0.1 1 10 100 1000 10000100000 Strain rate (s -1 ) Significant instantaneous strain rate sensitivity mi = 14.4MPa 30 Uniform elongation (%) True stress (MPa) 2000 1500 1000 500 (b) 5.7*10-4 s -1 5.8*10-3 s -1 1700 s -1 3750 s -1 0 0.0 0.2 0.4 0.6 True strain Similar UTS obtained regardless of the strain rate. Possible explanations for similar UTS: 1. Instantaneous effect weakens with strain 2. Weakened work-hardening at higher strain rate 4

Strain rate jump tests Necking Prestrain at 5.7 10-4 s -1 to different levels Unload and reload at 1700 s -1 until fracture Prestrain 0% 5% 15% 25% σ (MPa) 210 235 229 241 Instantaneous effect stay relatively constant with strain Weaker work-hardening rate at higher strain rate Lower density of defects developed at higher strain rate 5

TEM characterization C D (a) 5.7 10-4 s -1 STEM dark field (b) 1700 s -1 STEM dark field (c) 5.7 10-4 s -1 TEM bright field (d) 1700 s -1 TEM bright field Massive deformation twins and dislocation found in specimen strained at both low and high strain rate Difference in defects density is difficult to detect in TEM 6

XRD tests Defects in crystal will cause peak broadening in the X-ray diffraction Intensity 2000 1500 1000 500 220 5% 15% 25% 40% Normalized intensity 1.0 0.8 0.6 0.4 0.2 5% 15% 25% 40% 220 0 40 60 80 100 2Theta 0.0 73.0 73.5 74.0 74.5 75.0 2Theta Modified Williamson-Hall method-the peak broadening can be linked to the crystal size, dislocation density and population of twin boundaries & stacking faults as: 2 2 1/2 2 4 2 K = 0.9 / d + ( π A' b / 2) ρ K C + β ' W( K) + O( K C ) 7

Modified W-H plot 2 2 1/2 2 4 2 K = 0.9 / d + ( π A' b / 2) ρ K C + β ' W( K) + O( K C ) 220 Bragg angle-θ 0.010 0.010 K = cos θ ( 2 θ ) / λ 0.005 111 200 311 0.005 FWHM- 2θ K = 2sin θ / λ h k + k l + l h C = Ch00 1 q 2 2 2 h + k + l 2 2 2 2 2 2 0.000 30 40 50 60 70 80 0.000 55 56 57 58 59 60 61 K β W K = + π A b ρ K C + O 2 2 1/2 2 4 2 ' ( ) 0.9 / d ( ' / 2) ( K C ) 2 y = n + m K C K 2 C K W(K) 111 2.5 0.021 0.43 200 7.6 0.036 1 220 8.9 0.037 0.71 311 15.4 0.058 0.45 0.10 0.08 0.06 0.04 0.02 5.7*10-4 s -1 0.00 2 4 6 8 10 12 14 16 m = ( π A' b / 2) ρ n = 0.9 / d 2 2 1/2 8

Synchrotron XRD 0.020 0.015 Full profiles 5.7*10-4 s -1 1700 s -1 3750 s -1 1.0 0.8 220 5.7*10-4 s -1 1700 s -1 3750 s -1 Intensity 0.010 I/I max 0.6 0.4 0.005 0.2 0.000 30 40 50 60 70 2Theta 0.0 57 58 59 2θ ( ο ) Modified Williamson-Hall method-the peak broadening can be linked to the crystal size, dislocation density and population of twin boundaries & stacking faults as: 2 2 1/2 2 4 2 K = 0.9 / d + ( π A' b / 2) ρ K C + β ' W( K) + O( K C )

Modified Williamson-Hall plot (1/nm) 0.10 0.08 0.06 0.04 0.02 5.7*10-4 s -1 1700 s -1 3750 s -1 0.00 2 4 6 8 10 12 14 16 C (1/nm 2 ) ρ (m -2 ) β' (%) d (nm) 5.7 10-4 1.16 10 15 0.35 39.5 1700 8.68 10 14 0.24 64.6 3750 7.99 10 14 0.23 66.6 εɺ ρ & β ' Negative rate sensitivity of work-hardening

Modelling σ = σ + σ th ath Thermal and athermal stress ɺ ε ρ ν G V σ / M kt 0 th = mbλ 0 exp σ MkT M = lnɺ ( G kt ln b ) m ln V ε + V ρ Λ ν = ɺ ε + σ th 0 m 0 I 0 K σ ath = MαGb ρ + L HP 800 Yielding stress Engineering stress (MPa) 700 600 500 m I dσ y = = 14.4MPa d lnɺ ε ( + ) dσ y d σ th σ ath dσ th ln = ln = ln = m d ɺ ε d ɺ ε d ɺ ε T, ψ I 400 1E-4 1E-3 0.01 0.1 1 10 100 1000 10000100000 Strain rate (s -1 )

Thermal stress Engineering stress (MPa) 1600 1400 1200 1000 800 600 400 5.7*10-4 s -1 1700 s -1 5% prestrain 15% prestrain 25% prestrain 40% prestrain Prestrain 0% 5% 15% 25% σ (MPa) 210 235 229 241 200 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Engineering strain Conclusion :Thermal stress does not change with dislocation and twin density, and should be constant during straining. 13

Athermalstress σ = MαGb ρ + ath K HP L (a function of strain because of dislocation density and twin volume fraction) 500 Fe18Mn0.6C1.5Al Fitting Yield stress (MPa) 450 400 350 =634.7 MPa*um 1/2 300 0 5 10 15 20 Grain size (µm)

Dislocation and Twin evolution d = M k dε b ρ a ρ ρ f F = 1 e χ ( ε ε ) init n Dislocation density 1E15 1E14 1E13 Dislocation 5.7*10-4 (Modelling) Dislocation 1700 (Modelling) Dislocation 5.7*10-4 (Experiment) Dislocation 1700 (Experiment) 1E12 0.0 0.0 0.1 0.2 0.3 0.4 0.5 True strain Twin 5.7*10-4 Twin 1700 0.3 0.2 0.1 Twin volume fraction 5.7*10-4 1700 0.0222 0.0180 1.45 1.53 χ 0.965 1.50 0.103 0.112 1.35 2.03 0.1 0.1 εɺ ka f ρ εɺ F

Stress-strain curves 1600 Experiment 5.7*10-4 Simulation 5.7*10-4 Experiment 1700 Simulation 1700 True Stress 1200 800 400 0.0 0.1 0.2 0.3 0.4 0.5 True Strain 16

Conclusions σ ɺ ε < ɺ ε εɺ σ A A B εɺ B θ Positive instantaneous strain rate sensitivity Negative rate sensitivity of workhardening Yield stress increases with strain rates. UTS remains the same for various strain rates. Higher strain rates leads to lower dislocation density and twin volume fraction. The average glide distance is higher at higher strain rate due to its higher stress. ε 17