Understanding the Conjugate Gradient Method Hailiang Zhao * College of Computer Science and Technology, Zhejiang University July

Size: px
Start display at page:

Download "Understanding the Conjugate Gradient Method Hailiang Zhao * College of Computer Science and Technology, Zhejiang University July"

Transcription

1 Understanding the Conjugate Gradient Method Hailiang Zhao * College of Computer Science and Technology, Zhejiang University hliangzhao@zju.edu.cn July 10, 2020 Contents 1 Introduction 2 2 The Quadratic Form 2 3 The Steepest Descent Method The Direction and Optimal Step Size Eigenthings Eigenvalues and Spectral Radius Jacobi Iterations Convergence Analysis Instant Results General Convergence Conjugate Directions Methods What is Conjugacy Gram-Schmidt Conjugation Optimality Analysis Conjugate Gradient Method Convergence Analysis Picking Perfect Polynomials Chebyshev Polynomials Complexity Analysis Conjugate Gradient Method in Action Starting and Stopping Criterion Preconditioning Extending to General Cases Postscript 25 * Hailiang is a first-year Ph.D. student of ZJU-CS. His homepage is 1

2 1 Introduction line search Hessian Hessian Conjugate Gridient method, CG Hessian CG CG Ax = b, (1.1) A R n n 1 b R n x R n A LU Jacobi Gauss-Seidel CG A Jacobi A CG Ax = b CG n 2 The Quadratic Form the Quadratic Form A R n n x, b R n c R x Ax x x Ax x = 2Ax x f(x) = Ax b f(x) 1 2 x Ax b x + c, (2.1) = (A + A )x b x x = b A f(x) 1 2 (A + A )x = b A A 2 x = A 1 b x f(x) = 0 x = x + e e R n f(x + e) = 1 2 (x + e) A(x + e) b (x + e) + c = f(x ) e Ae > f(x ). 1 A R n n x R n x Ax > λ x Ax = λx x Ax > 0 λ x 2 > 0 λ > 0 A A 2

3 这说明当 A 是一个对称正定矩阵时 通过求解 Ax = b 得到的就是 f (x) 的全局最小值 这相当 于把一个二次型的最优化问题转变成了线性方程组的求解问题 当 A 是一个对称正定矩阵时 f (x) 的图像是一个图形开口向上的抛物面 如果 A 非正定 那么其全局最小值点就可能不止一个 Fig. 2.1展示了不同的 A R2 2 对 f (x) 的图像的影响 Figure 2.1: 不同的 A 对 f (x) 的图像的影响 a 正定矩阵的二次型 b 负定矩阵的二次型 c 奇异矩 阵和非正定矩阵的二次型 d 不定矩阵的二次型 此时解是一个鞍点 梯度法和 CG 均无法处理该问题 3 The Steepest Descent Method 3.1 The Direction and Optimal Step Size 最速下降法即梯度法 作为一种一维搜索算法 梯度法采取函数梯度的反方向作为迭代方向 并 通过求导的方式确定迭代的最优步长 因为梯度是函数值增长最快的方向 所以梯度下降的方向是 函数值减少最快的方向 这就是为什么梯度法又被称为最速下降法的原因 在梯度法中 我们将从 任意点 x(0) 开始 经过迭代得到 x(1), x(2),... 直到达到最大迭代次数或者误差满足要求为止 在第 i 轮迭代中 梯度法选择的方向为 b Ax(i) 3 为了简化描述 我们定义如下变量 误差向量 e(i) x(i) x 表示第 i 轮迭代时 x(i) 和全局最小值点 x 的距离 残差向量 r(i) b Ax(i) 表示第 i 轮迭代时 Ax(i) 和 b 之间的距离 残差向量其实就是最速下降的方向 且 r(i) = b Ax(i) = Ax Ax(i) = Ae(i) 这个等价变换 会反复用到 务必记住 因此 x 将按照如下公式进行更新 x(i+1) x(i) + α r(i), (3.1) 3 别忘了只有当 A 是对称矩阵的时候才有 f = Ax b 不管 A 是否为对称阵 梯度法都会选取 b Ax x (i) 作为迭代 方向 因此梯度法并不能够保证收敛 我们会在后文只会给出当 A 为对称阵和对称正定阵时的收敛速度 3

4 α i α f(x (i+1) ) α φ(α) α α φ(α) = 0 α φ(α) = α f(x (i+1) ) = ( x(i+1) f(x (i+1) ) ) α x (i+1) = r(i+1) r (i) = 0. (3.2) (3.2) α α Fig. 3.1 Figure 3.1: a b x (0) = [ 2, 2] x 1x 2 c f(x) α α d α (3.2) r(i+1) r (i) = (b Ax (i) ) r (i) = [ b A(x (i) + α r (i) ) ] r(i) = (b Ax (i) ) r (i) α(ar (i) ) r (i) = r(i) r (i) αr(i) Ar (i) = 0, (3.3) α r (i) r (i) α = r(i) Ar. (3.4) (i) x (0) (3.4) (3.1) (3.1) x (1), x (2),... A r k = 0 Algorithm 1 4

5 Algorithm 1: Steepest Descent. Input: A R n n b R n Output: x Ax = b argmin x f(x) 1 r (0) = b Ax (0) 2 k = 0 3 while r k = 0 do 4 k = k α (k) = ( r(k 1) r ) ( ) (k 1) / r (k 1) Ar (k 1) 6 x (k) = x (k 1) + α (k) r (k 1) 7 r (k) = b Ax (k) 8 end while 9 return x (k) Algorithm 1 - step 5 step 7 - Algorithm 1 6 x (k) = x (k 1) + α (k) r (k 1) Ax (k) + b = (Ax (k 1) b) α (k) Ar (k 1) r (k) = r (k 1) α (k) Ar (k 1). (3.5) (3.5) r (k 1) α (k) Ar (k 1) b Ax (k) r (k) Ar (k 1) 7 - r (k) r (k) x (k) b Ax (k) r (k) Algorithm 2 Algorithm 2:. Input: A R n n b R n ε MaxIter Output: Ax = b 1 r (0) = b Ax (0), δ (0) = r (0) r (0) 2 k = 0 3 while k < MaxIter and δ (k) > ε 2 δ (0) do 4 q = Ar (k), α (k) = δ (k) /r (k) q 5 x (k+1) = x (k) + α (k) r (k) 6 if k is divisible by n then 7 /* Periodically update by the original formula */ 8 r (k+1) = b Ax (k+1) 9 else 10 /* Reduce complexity according to (3.5) */ 11 r (k+1) = r (k) α (k) q 12 end if 13 k = k + 1, δ (k) = r (k) r (k) 14 end while 15 return x (k) 5

6 3.2 Eigenthings Eigenvalues and Spectral Radius v B λ Bv = λv B v v B λ < 1 lim k B k v 0; λ > 1 lim k B k v Fig. 3.2 Fig. 3.3 Figure 3.2: λ = 0.5 B k v Figure 3.3: λ = 2 B k v x B x B B R n n n 4 n B x x B n {v 1,..., v n } x = n c i v i, Bx = n c iλ i v i λ i v i i, c i = 1 x = n v i i λ i > 1 B k x 1 B k x 0 B k x 0 λ i B spectral radius ρ(b) max λ i. (3.6) i 4 6

7 B n B (defective matrix) Jacobi Iterations Ax = b Jacobi Gauss-Seidel Jacobi Jacobi Ax = b Jacobi x (k+1) i i, a ii 0 x (k+1) i x (k+1) j x (k+1) i x i = b i j i a ijx j a ii, (3.7) = b i i 1 j=1 a ijx (k) j n j=i+1 a ijx (k) j (3.8) a ii x j = b i i 1 j=1 a ijx (k+1) j n j=i+1 a ijx (k) j, (3.9) a ii Gauss-Seidel Gauss-Seidel Jacobi D = diag(a) E A F A A = D E F Ax = b (D E F)x = b D 1 (D E F)x = D 1 b x = D 1 (E + F)x + D 1 b. B D 1 (E + F) z D 1 b Jacobi (3.8) x (k+1) = Bx (k) + z. (3.10) Ax = b x (stationary point) i x (i) x e (i) (3.10) x (k+1) = Bx (k) + z = B(x + e (i) ) + z = Bx + z + Be (i) x = Bx + z = x + Be (i) e (i+1) = x (i+1) x = Be (i) Jacobi ρ(b) < 1 0 Jacobi x x (0) Jacobi B Jacobi A A 7

8 3.3 Convergence Analysis Instant Results e (i) A λ e r (i) = Ae (i) = λ e e (i) r (i) A λ e (3.4) α Ar (i) = λ e Ae (i) = λ e r (i), (3.11) α = r (i) r (i) r(i) Ar = r (i) r (i) (i) r(i) λ (3.11) er (i) = r (i) r (i) λ e r (i) r (i) = 1 λ e. (3.12) (3.1) e (i+1) + x = e (i) + x + α r (i), e (i+1) = e (i) + α r (i). (3.13) e (i+1) = e (i) + 1 r (i) (3.12) λ e = e (i) 1 λ e λ e e (i) = 0. x Fig. 3.4 Figure 3.4: A = [ [3, 2], [2, 6] ] A v 1 = [1, 2] v 2 = [ 2, 1] λ 1 = 7 λ 2 = 2 e (i) A λ e A A A = PDP 1 = PDP, (3.14) P = {v 1,..., v n } {v 1,..., v n } D = 8

9 diag(λ 1,..., λ n ) n e (i) e (i) = n ξ i v i, (3.15) e (i) 2 = n ξ2 r (i) = Ae (i) = n ξ iλ i v i e (i) Ae (i) = ( n ξ i vi )( n ) n ξ i λ i v i = ξi 2 λ i, (3.16) r(i) Ar (i) = ( n ξ i λ i vi ) ( n A ξ i λ i vi ) ( n )( n = ξ i λ i v i ξ i λ 2 ) i v i = e (i+1) = e (i) + α r (i) n ξi 2 λ 3 i. (3.17) e (i+1) = e (i) + r (i) r (i) r(i) Ar r (i) (i) n = e (i) + ξ2 i λ2 i n r (i) (3.18) ξ2 i λ3 i A λ (3.18) e (i+1) = e (i) + λ2 n ξ2 i λ 3 n ( Ae (i) ) ξ2 i = e (i) + λ2 n ξ2 i λ 3 n ( λe (i) ) ξ2 i = 0. (3.19) Ae (i) = A n ξ iv i = n ξ iav i = n ξ iλv i = λe (i) A f(x) n A e (i) A λ e A General Convergence energy norm e A (e Ae) 1 2 (3.20) Fig. 3.5 x f(x) 9

10 Figure 3.5: 能量范数相同的两个向量 根据能量范数的定义可得 e(i+1) 2A = e (i+1) Ae(i+1) = (e (i) +α (3.13) r(i) )A(e(i) + α r(i) ) 2 = e (3.4) (i) Ae(i) + 2αr(i) Ae(i) + α r(i) Ar(i) r(i) r(i) ( ) ( r(i) r(i) )2 r(i) r(i) + r(i) Ar(i) = e(i) 2A + 2 Ar r(i) Ar(i) r(i) (i) = e(i) 2A (r(i) r(i) )2 Ar r(i) (i) ( = e(i) 2A 1 (r(i) r(i) )2 ) Ar )(e Ae ) (r(i) (i) (i) (i) n ( ) ( ξi λi ) 2 n = e(i) A 1 n (3.16) & (3.17) ( ξi2 λi )( ξi2 λ3i ) n ( ξi2 λ2i )2 n = e(i) 2A ω 2 ω 2 1 n ( ξi2 λi )( ξi2 λ3i ) (3.21) 我们只要分析 ω 2 的上界 就可以知道梯度法在最坏情况下的表现了 ω 越小 收敛速度越快 至于原 因 此处暂时按下不表 后文会给出解释 我们先针对一个简单的情况 A R2 2 是个正定对称阵 进行分析 前文已经说明说明过 当 A 是正定矩阵时 其特征值 λ1, λ2 均为正数 且特征向量 v1, v2 线性无关 因此不妨设 λ1 > λ2 此时 A 的谱条件数 spectral condition number κ = λ1 /λ2 1 请回顾(3.15)5 我们将误差向量 e(i) 相对于特征向量张成的空间/坐标系的斜率定义为 µ ξ2 /ξ1 5 在(3.15)中 我们将 vi 视为基 相应地 ξi 是对应基上的坐标 将 v1 视为 x 轴 v2 视为 y 轴 即可类比得到斜率 µ 10

11 由此可对 ω 2 作如下化简 ( ω2 = 1 ( = 1 ξ12 λ21 +ξ22 λ22 ξ12 λ ξi λi ξ12 λ2 )2 )( ξi λi ξ12 λ32 ) (κ2 + µ2 )2. (κ + µ2 )(κ3 + µ2 ) (3.22) 上式表明我们可以将 ω 看成 κ 和 µ 的函数 只考虑正数部分 观察 Fig. 3.6左图可发现 κ 和 µ 越 小 ω 越小 此外 µ = ±κ 时 ω 最大 这个结论从图像上看很直观 也可以通过对(3.22)求导得到 分析这个图像也可以理解梯度法是如何做到一步迭代即收敛的 当 e(i) 是一个特征向量时 此时误 差向量在特征向量组成的坐标系的坐标轴上 因此斜率 µ 为 0 或 此时均有 ω = 0 当 A 的所 有特征值均相等时 κ = 1 同样有 ω = 0 此外 我们可以观察一下 ω 随 κ 和 µ 的变化情况 当 κ 很小的时候 不论 µ 如何 不论初始点如何选取 收敛速度都是比较快的 这是因为 A 各个方向的 特征值相似 所以 f (x) 接近球形 在各个点处均有合适的迭代方向 当 κ 很大的时候 不同的特征 向量的能量范数差距很大 此时 f (x) 的一极相对另一极长很多 想象一个 a 和 b 差异很大的椭圆 x2 /a2 + y 2 /b2 = 1 如果初始点在山脊处 那么迭代方向还是很好找的 收敛速度不算慢 如果初 始点在山谷处 那么梯度法只能朝着波谷方向曲折而缓慢的前进 每一步迭代作出的有效改进很小 收敛速度很慢 Fig. 3.6右图给四种情形下梯度法的迭代情况做了一个形象化的展示 Figure 3.6: 左图 ω 关于 κ 和 µ 的函数图像 右图 四种情形下梯度法的迭代情况 a κ 大 µ 小 b κ 大 µ 大 c κ 小 µ 小 d κ 小 µ 大 我们再来算一算最差的情况下 即 µ = ±κ 时 ω 的上界是多少 对于对称正定阵 A 我们将条 件数 condition number 定义为特征值之比的最大值 λmax κ. λmin 当 µ = ±κ 时有 µ2 = κ2 因此(3.22)满足 ω2 1 (3.23) ( κ 1 )2 4κ4, κ5 + 2κ4 + κ3 κ+1 进而得到 ω κ 1. κ+1 该结论在 n 2 时依然成立 将(3.24)绘制出来可得 11 (3.24)

12 Figure 3.7: A ω κ ω f(x (i) ) f(x 1 ) f(x (0) ) f(x ) = 2 e (i) Ae (i) 1 2 e (0) Ae (0) = e (i) 2 A e (0) 2 = ω 2, (3.25) A ω e (i) 2 A i (3.24) ( ) i κ 1 e (i) A e (0) A, (3.26) κ + 1 f(x (i) ) f(x ) f(x (0) ) f(x ) A 4 Conjugate Directions Methods 4.1 What is Conjugacy ( ) 2i κ 1. (3.27) κ + 1 Fig. 3.6 b n d (0), d (1),..., d (n 1) n n (3.15) x (i) x (i+1) x (i) + α (i) d (i). (4.1) α (i) d (i) e (0) = x x (0) = α (0) d (0) +...α (n 1) d (n 1), (4.2) e (0) 12

13 i + 1 i e (i+1) = e (0) + α (k) d (k) (4.3) d (i) e (i+1) = n k=i+1 = k=0 n 1 k=i+1 α (k) d (i) d (k) α (k) d (k), d (i) d (j) = 0 if i j = 0. (4.4) d (i) (e (i) + α (i) d (i) ) = 0 = α (i) = d (i) e (i) d (i) d. (4.5) (i) (4.5) e (i) i e (i) d (i) α (i) n d (0), d (1),..., d (n 1) n A- d (0), d (1),..., d (n 1) A- A-orthogonal p q p Aq = 0, (4.6) p q A- α (i) A- Fig. 4.1 a A- A p q b a b Figure 4.1: A- A- A- conjugate direc- 13

14 tions methods (4.4) (4.5) d (i) Ae (i+1) = 0. (4.7) α (i) = d (i) Ae (i) d (i) Ad (i) r (i) = Ae (i) = d (i) r (i) d (i) Ad (i) (4.8) (4.5) d (i) (4.8) (4.7) (3.2) (4.1) x α f(x (i+1) ) = ( x(i+1) f(x (i+1) ) ) α x (i+1) = r(i+1) d (i) = (d (i) r (i+1)) = (d (i) Ae (i+1)) = 0 (4.7) A- d (i) r (i) (3.15) e (0) n 1 e (0) = δ i d (i). (4.9) n 1 d j Ae (0) = δ i d j Ad (i) d (i) d (j) = 0 if i = j = δ i d j Ad (j), δ j = d j Ae (0) d j Ad (j) = d j Ae (0) + j 1 i=0 α (i)d (j) Ad (i) d j Ad (j) = d j A( e (0) + j 1 i=0 α ) (i)d (i) d j Ad (j) d (i) d (j) = 0 if i j j 1 e (j) = e (0) + α (i) d (i) i=0 = d j Ae (j) d j Ad = d j r (j) (j) d j Ad (j) = α (j). (4.8) (4.10) α (i) = δ i e (i) 14

15 i 1 e (i) = e (0) + α (j) d (j) (4.3) = = j=0 n 1 i 1 δ j d (j) δ j d (j) (4.9) & (4.10) j=1 j=0 n 1 δ j d (j). (4.11) j=i 4.2 Gram-Schmidt Conjugation d (i) (4.1) (4.8) - conjugate Gram-Schmidt process A- - - Gram-Schmidt process - {u (0),..., u (n 1) } {q (0),..., q (n 1) } q (0) = u (0), q (1) = u (1) u (1) q (0) q (0) q (0) q (0), q (n 1) = u (n 1) n 2 ( u(n 1) q (i) ) i=0 q (i) q (i) q (i). (4.12) q (1) u (1) q (0) u (1) q (0) q (0) q (0) u (1) q (0) q (1) q (2) q (1) p (i) i q (0),..., q (i 1) q (i) i, q (i) i 1 q (i) = p (i) (p (i) q (k) )q (k), q (i) q (i) q (i). (4.13) k=0 A- - q (i) d (i) i 1 ( p (i) Ad (k) i : d (i) = p (i) d (k) Ad d (k) ). (4.14) (k) k=1 p (i) Ad (k) d (k) Ad β ik - (k) i = 0 d (i) = p (i) 0 < i < n i 1 d (i) = p (i) + β ik d (k), (4.15) k=0 d (i) Ad (j) = p (i) Ad i 1 ( ) (j) + β ik d (k) Ad (j) k=0 = p (i) Ad (j) + β ij d (j) Ad (j), (4.16) 15

16 (4.15) (4.17) (4.14) β ij = p (i) Ad (j) d (j) Ad. (4.17) (j) p (i) CG p (i) r (i) 4.3 Optimality Analysis e (i) e (i) A 6 D i i D i span{d (0),..., d (i 1) } (4.3) j 1 e (i) = e (0) + α (i) d (i) e (0) + D i. (4.18) Fig. 4.2 e (i) A i = 2 i=0 Figure 4.2: e (0) + D 2 e (i) A e (0) + D i e (i) e (i) = argmin e e(0) +D i e A e (i) A e (i) 2 A e (i) 2 A = e (i) A e (i) (4.11) ( n 1 ) A ( n 1 ) = δ j d (j) δ k d (k) d (i) d (j) = 0 if i j j=i k=i n 1 = (δ j d (j) ) A(δ j d (j) ). (4.19) j=i e (i) 2 A e (i) A CG i 16

17 (4.11) i j j > i d (i) A n 1 d (i) r (j) = d (i) Ae (j) = d (i) A δ k d (k) k=j n 1 = δ k d (i) Ad (k) k=j d (i) d (k) A- = 0. (4.20) j {i + 1,..., n 1} r (j) d (0),..., d (i) 1 A- r (j) = Ae (j) (4.15) r (j) j > i d (i) r (j) = p (i) r i 1 (j) + β ik d (k) r (j) k=0 0 = p (i) r (j), (4.21) j {i + 1,..., n 1} r (j) p (0),..., p (i) 2 (4.15) r (j) j = i 3 d (i) r (i) = p (i) r (i). (4.22) Algorithm 2 (3.5) - x (k) = x (k 1) + α (k) d (k 1) Ax (k) + b = (Ax (k 1) b) α (k) Ad (k 1) r (k) = r (k 1) α (k) Ad (k 1). (4.23) r (k 1) α (k) Ad (k 1) b Ax (k) r (k) Ad (k 1) - b Ax (k) 4.4 Conjugate Gradient Method 4.2 CG d (0),..., d (n 1) r (0),..., r (n 1) - (4.21) (4.8) (4.1) x i j : r (i) r (j) = 0. (4.24) (4.15) d (i) d (0),..., d (i 1) n p (i) r (i) 17

18 r (i) r (j+1) = r (i) r (j) α (j) r (i) Ad (j) (4.23) α (j) r(i) Ad (j) = r(i) r (j) r(i) r (j+1) (4.24) 1 r(i) α Ad (i) r(i) r (i), i = j (j) = 1 α (i 1) r(i) r (i), i = j otherwise β ij = { 1 α (i 1) r (i) r (i) d (i 1) Ad (i 1), j = i 1 0. j < i 1 (4.25) (4.17) (4.26) CG O(n 2 ) O(m) m A j = i 1 α (i 1) β ij β ij = d (i 1) Ad (i 1) d (i 1) r (i 1) r(i) r (i) d (i 1) Ad (i 1) (4.8) = r (i) r (i) d (i 1) r (i 1) (4.22) & p (i 1) r (i 1) r(i) = r (i) r(i 1) r (4.27) (i 1) β ij j = i 1 β (i 1) (4.15) d (i+1) = r (i+1) + β (i) d (i). (4.28) CG Algorithm Convergence Analysis CG n (4.23) - cancellation error A Picking Perfect Polynomials - span{r (0),..., r (i) } = span{d (0),..., d (i) } = D i+1, (4.29) r (i) D (i+1) (4.23) i + 1 r (i+1) r (i) Ad (i) r (i+1) r (i) AD i D i+2 = D i+1 AD i+1. (4.30) 18

19 Algorithm 3: CG. Input: A R n n b R n ε MaxIter Output: Ax = b 1 k = 0, r (0) = b Ax (0) 2 d (0) = r (0) // Set d (0) as r (0) 3 δ (0) = r (0) r (0) 4 while k < MaxIter and δ (k) > ε 2 δ (0) do 5 q = Ad (k), α (k) = δ (k) /d (k) q 6 x (k+1) = x (k) + α (k) d (k) 7 if k is divisible by n then 8 /* Periodically update by the original formula */ 9 r (k+1) = b Ax (k+1) 10 else 11 /* Reduce complexity according to (4.23) */ 12 r (k+1) = r (k) α (k) q 13 end if 14 δ (k+1) = r (k+1) r (k+1), β = δ (k+1) /δ (k) 15 d (k+1) = r (k+1) + βd (k) // Set d (k+1) by (4.28) 16 k = k end while 18 return x (k) D i = D i 1 AD i 1 = D 1 AD 1 A 2 D 1... A i 1 D 1 = span{d (0), Ad (0),..., A i 1 d (0) } = span{r (0), Ar (0),..., A i 1 r (0) } r (i) = Ae (i) = span{ae (0), A 2 e (0),..., A i e (0) }. (4.31) Krylov i ( i e (i) = I + ψ k A k) e (0), (4.32) k=1 ψ k α (k) β (k) A P i (A) λ P i (λ) = 1 + i k=1 ψ kλ k P i (0) = 0 (4.32) e (i) = P i (A)e (0) v 1,..., v n A λ 1,..., λ n e (0) 19

20 e (0) = n ξ iv i n e (i) = ξ j P i (λ j )v j Ae (i) = e (i) 2 A = j=1 n ξ j P i (λ j )λ j v j j=1 P i (A)v j = P i (λ j )v j n ξj 2 ( Pi (λ j ) ) 2 λj, v j = 1 (4.33) j=1 e (0) 2 A = n j=1 ξ2 j λ j P 0 ( ) CG e (i) A (4.33) CG e (i) A P i e (i) 2 A min P i = min P i max λ max λ ( Pi (λ) ) 2 n ξj 2 λ j j=1 ( Pi (λ) ) 2 e(0) 2 A. (4.34) n = 2 Fig. 3.3 λ 1 = 7, λ 2 = 2 Fig. 4.3 CG max λ ( Pi (λ) ) 2 a i = 0 e(0) 2 A 1 b i = 1 P i (0) = 1 P 1 (λ) = a λ + 1 a a = argmin max { (2a + 1) 2, (7a + 1) 2}, a a = 2/9 P 1 (λ) = 2/9λ + 1 5/9 c i = 2 (0, 1), (2, 0), (7, 0) 0 Figure 4.3: i CG P i(0) = 1 P i 0 λ 1 = λ 2 (0, 1), (λ 1, 0), (λ 2, 0) CG Fig. 4.3 d 20

21 λ min λ max CG [λ min, λ max ] CG Chebyshev Polynomials Chebyshev polynomials i T i (ω) = 1 ( (ω + ω 2 2 1) i + (ω ω 2 1) i). (4.35) Fig. 4.4 ω [ 1, 1] T i (ω) ω / [ 1, 1] P i (λ) = ( ) T λmax+λ min 2λ i λ max λ min T i ( λ max+λ min λ max λ min ) (4.36) 7 max λ ( Pi (λ) ) 2 Fig. 4.4 λmin = 2, λ max = c Figure 4.4: 7 CG 21

22 T i ( λmax+λmin 2λ λ max λ min ) 1 ( ) λ T max+λ min 2λ i λ max λ min e (i) A ( ) e (0) A λ T max+λ min i λ max λ min ( ) 1 λmax + λ min T i e (0) A λ max λ min ( ( κ + 1 ) i ( κ 1 ) ) i 1 = 2 + e (0) A. (4.37) κ 1 κ + 1 ( κ+1 ) i i κ 1 0 CG ( κ 1 ) i e(0) e (i) A 2 A. (4.38) κ + 1 (4.37) (3.27) i = 1 CG i > 1 Fig. (3.7) CG Fig. (4.5) CG κ 2 CG (4.38) Figure 4.5: CG κ 4.6 Complexity Analysis CG CG CG - - O(m) m ϵ e (i) = ϵ e (0) (3.27) 1 ( 1 ) i 2 κ ln. (4.39) ϵ 22

23 (4.38) CG 1 ( 2 ) i κ ln 2. (4.40) ϵ O(mκ) CG O(m κ) O(m) d κ O(n 2/d ) O(n 2 ) CG O(n 3/2 ) O(n 5/3 ) CG O(n 4/3 ) 5 Conjugate Gradient Method in Action 4 CG CG 5.1 Starting and Stopping Criterion x (0) CG x (0) = 0 f(x) A (4.27) Algorithm 3 Step 14 β ij 0 Algorithm 3 Step Preconditioning Fig. 4.5 (4.38) κ CG CG M Ax = b M 1 Ax = M 1 b, (5.1) κ(m 1 A) κ(a) M 1 A A M 1 A CG Ax = b M M A M 1 A M E EE = M Cholesky λ M 1 A v (E 1 AE )(E v) = E 1 A(E E )v E E = E E = I = (E E )E 1 Av = E (E E 1 )Av E E 1 = M 1 = E M 1 Av M 1 Av = λv = λ(e v), (5.2) λ E 1 AE E v Ax = b { E 1 AE ˆx = M 1 b, ˆx = E x. (5.3) 23

24 ˆx x A E 1 AE CG ˆx Transformed Preconditioned Conjugate Gradient Method TPCG CG (5.4) ˆd (0) = ˆr (0) = E 1 b E 1 AE ˆx (0) α (i) = ˆr (i) ˆr (i) ˆd (i) E 1 AE ˆd (i) ˆx (i+1) = ˆx (i) + α (i) ˆd(i) ˆr (i+1) = ˆr (i) α (i) E 1 AE ˆd (i) β (i+1) = ˆr (i+1) ˆr (i+1) ˆr (i) ˆr (i) ˆd (i+1) = ˆr (i+1) + β (i+1) ˆd(i). TPCG E E x ˆx ˆr (i) = E 1 r (i) ˆd (i) = E d (i) ˆx = E x E E 1 = M 1 (5.4) r (0) = b Ax (0), d (0) = M 1 r (0) α (i) = r (i) M r (i) d (i) Ad (i) x (i+1) = x (i) + α (i) d (i) r (i+1) = r (i) α (i) Ad (i) β (i+1) = r (i+1) M 1 r (i+1) r (i) M 1 r (i) d (i+1) = M 1 r (i+1) + β (i+1) d (i). Untransformed Preconditioned CG Method UPCG TPCG UPCG ˆx UPCG E f(x) M = A κ(m 1 A) = 1 f(x) f(x) Mx = b M A f(x) Cholesky incomplete Cholesky preconditioning CG / Transformed/Untransformed Preconditioned Steepest Descent Method 5.3 Extending to General Cases A CG x Ax b 2 = 0 (5.4) (5.5) min x Ax b 2, (5.6) A Ax = A b. (5.7) A Ax = b A R m n m > n overconstrained (5.7) (5.6) A A Ax = b underconstrained A A CG 24

25 (5.7) A CG CG r (i) b Ax (i) r (i) f (x (i) ) α (i) β (i) Fletcher-Reeves FR Polak-Ribière PR β(i+1) F R = r (i+1) r (i+1) r (i) r (i) β(i+1) P R = r (i+1) (r (i+1) r (i) ) r (i) r (i) (5.8) FR f(x) PR β(i+1) P R < 0 CG { r } (i+1) (r (i+1) r (i) ) β (i+1) max r(i) r, 0, (5.9) (i) CG CG f f CG f CG 6 Postscript Jonathan Richard Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain CG.pdf 25

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

4 A C n n, AA = A A, A,,, Hermite, Hermite,, A, A A, A, A 4 (, 4,, A A, ( A C n n, A A n, 4 A = (a ij n n, λ, λ,, λ n A n n ( (Schur λ i n

4 A C n n, AA = A A, A,,, Hermite, Hermite,, A, A A, A, A 4 (, 4,, A A, ( A C n n, A A n, 4 A = (a ij n n, λ, λ,, λ n A n n ( (Schur λ i n ,?,,, A, A ( Gauss m n A B P Q ( Ir B = P AQ r(a = r, A Ax = b P Ax = P b, x = Qy, ( Ir y = P b (4 (4, A A = ( P Ir Q,,, Schur, Cholesky LU, ( QR,, Schur,, (,,, 4 A AA = A A Schur, U U AU = T AA = A A

More information

( ) Wuhan University

( ) Wuhan University Email: huangzh@whueducn, 47 Wuhan Univesity i L A TEX,, : http://affwhueducn/huangzh/ 8 4 49 7 ii : : 4 ; 8 a b c ; a b c 4 4 8 a b c b c a ; c a b x y x + y y x + y x x + y x y 4 + + 8 8 4 4 + 8 + 6 4

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

高等数学A

高等数学A 高等数学 A March 3, 2019 () 高等数学 A March 3, 2019 1 / 55 目录 1 函数 三要素 图像 2 导数 导数的定义 基本导数表 求导公式 Taylor 展开 3 积分 Newton-Leibniz 公式 () 高等数学 A March 3, 2019 2 / 55 函数 y = f(x) 函数三要素 1 定义域 2 值域 3 对应关系 () 高等数学 A March

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; < ! # %& ( )! & +, &. / 0 # # 1 1 2 # 3 4!. &5 (& ) 6 0 0 2! +! +( &) 6 0 7 & 6 8. 9 6 &((. ) 6 4. 6 + ( & ) 6 0 &6,: & )6 0 3 7 ; ; < 7 ; = = ;# > 7 # 0 7#? Α

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

Vol. 36 ( 2016 ) No. 6 J. of Math. (PRC) HS, (, ) :. HS,. HS. : ; HS ; ; Nesterov MR(2010) : 90C05; 65K05 : O221.1 : A : (2016)

Vol. 36 ( 2016 ) No. 6 J. of Math. (PRC) HS, (, ) :. HS,. HS. : ; HS ; ; Nesterov MR(2010) : 90C05; 65K05 : O221.1 : A : (2016) Vol. 36 ( 6 ) No. 6 J. of Math. (PRC) HS, (, 454) :. HS,. HS. : ; HS ; ; Nesterov MR() : 9C5; 65K5 : O. : A : 55-7797(6)6-9-8 ū R n, A R m n (m n), b R m, b = Aū. ū,,., ( ), l ū min u s.t. Au = b, (.)

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

:

: : : 4.1....................... 1 4.1.1............... 1 4.2........... 10 4.2.1............... 10 4.2.2..... 14 4.2.3................ 18 4.2.4................ 24 4.3...................... 26 4.3.1..............

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () ! # % & & &! # % &! ( &! # )! ) & ( +,! (# ) +. + / 0 1 2 3 4 4 5 & 6!!!.! (!,! (! & 7 6!. 8 / 6 7 6 8! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () , 4 / 7!# + 6 7 1 1 1 0 7!.. 6 1 1 2 1 3

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

AU = U λ c 2 c 3 c n C C n,, n U 2 U2 C U 2 = B = b 22 b 23 b 2n b 33 b 3n b nn U = U ( U 2, U AU = = = ( ( U 2 U 2 U AU ( U2 λ λ d 2 d 3 d n b 22 b 2

AU = U λ c 2 c 3 c n C C n,, n U 2 U2 C U 2 = B = b 22 b 23 b 2n b 33 b 3n b nn U = U ( U 2, U AU = = = ( ( U 2 U 2 U AU ( U2 λ λ d 2 d 3 d n b 22 b 2 Jordan, A m? (264(, A A m, A (, P P AP = D, A m = P D m P, P AP 837, Jacobi (, ( Jacobi,, Schur 24 Cayley-Hamilton 25,, A m Schur Jordan 26 Schur : 3 (Schur ( A C n n, U U AU = B, (3 B A n n =, n, n λ

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table 38 2 2010 4 Journal of Fuzhou University Natural Science Vol 38 No 2 Apr 2010 1000-2243 2010 02-0213 - 06 MLP SVM 1 1 2 1 350108 2 350108 MIP SVM OA MLP - SVM TP391 72 A Research of dialectical classification

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

ABP

ABP ABP 2016 319 1 ABP A. D. Aleksandrov,I. Y. Bakelman,C. Pucci 1 2 ABP 3 ABP 4 5 2 Ω R n : bounded C 0 = C 0 (n) > 0 such that u f in Ω (classical subsolution) max Ω u max u + C 0diam(Ω) 2 f + L Ω (Ω) 3

More information

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2 ! # % ( % ) +,#./,# 0 1 2 / 1 4 5 6 7 8! 9 9 : ; < 9 9 < ; ?!!#! % ( ) + %,. + ( /, 0, ( 1 ( 2 0% ( ),..# % (., 1 4 % 1,, 1 ), ( 1 5 6 6 # 77 ! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ!

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

% %! # % & ( ) % # + # # % # # & & % ( #,. %

% %! # % & ( ) % # + # # % # # & & % ( #,. % !!! # #! # % & % %! # % & ( ) % # + # # % # # & & % ( #,. % , ( /0 ) %, + ( 1 ( 2 ) + %, ( 3, ( 123 % & # %, &% % #, % ( ) + & &% & ( & 4 ( & # 4 % #, #, ( ) + % 4 % & &, & & # / / % %, &% ! # #! # # #

More information

07-3.indd

07-3.indd 1 2 3 4 5 6 7 08 11 19 26 31 35 38 47 52 59 64 67 73 10 18 29 76 77 78 79 81 84 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

%% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0

%% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0 !! # # %% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0 +! (%& / 1! 2 %& % & 0/ / %& + (.%.%, %& % %& )& % %& ) 3, &, 5, % &. ) 4 4 4 %& / , %& ).. % # 6 /0 % &. & %& ) % %& 0.!!! %&

More information

! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, ( 4! 0 & 2 /, # # ( &

! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, ( 4! 0 & 2 /, # # ( & ! # %! &! #!! %! %! & %! &! & ( %! & #! & )! & & + ) +!!, + ! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, 3 0 1 ( 4! 0 & 2 /, # # ( 1 5 2 1 & % # # ( #! 0 ) + 4 +, 0 #,!, + 0 2 ), +! 0! 4, +! (!

More information

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7 ! # % # & ( & ) # +,,., # / 0 1 3. 0. 0/! 14 5! 5 6 6 7 7 7 7 7! 7 7 7 7 7 7 8 9 : 6! ; < ; < ; : 7 7 : 7 < ;1< = = : = >? ) : ; < = > 6 0 0 : ; < ) ; < ; < ; : < ; < = = 7 7 7 Α > : Β ; < ; 6 < > ;:

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

Microsoft Word - xxds fy.doc

Microsoft Word - xxds  fy.doc , 5, ;,,,,,, ; ; 4,,, ; () 1345, 2,,,,,,,, 2014 2 1 1 11 1 111 1 112 2 113 Cramer 3 12 3 121 3 122 4 123 4 13 5 131 5 132 13 133 13 134 Cramer 14 135 16 14 17 15 20 16 () 27 2 30 21 31 211 31 212 31 213

More information

untitled

untitled 7 Tel: 866878 hng_di@mil.j.ed.cn 6 67 9 Fndmenl Mechnic of Flid I.G.Crrie rd Ediion Mrcel Dekker Inc. Ne York -9-5 5 -9-5 5 ....4.5.6.7.8-9-5 5 4 . m P() m/v V V V V' -9-5 5 5

More information

koji-13.dvi

koji-13.dvi 26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)

More information

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ < ! # %!! ( (! +,. /0 0 1 2,34 + 5 6 7,3. 7, 8, 2 7 + 1 9 #. 3 : + ; + 5 83 8 % 8 2 ; , 1 1 8 2 =? : + 2 = 2 = Α 1,!. Β 3 + 5 Χ Β Β

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

! # %! #! #! # % + &, % % ) %. /! # 0 1

! # %! #! #! # % + &, % % ) %. /! # 0 1 ! # %! #! #! # % + &, % % ) %. /! # 0 1 2 32 % 4! #! # 4 4 2 32 4 4! # 2 32 ! # % 2 5 2 32 % % 6 2 7 8 %! 6 # %3 3 9 % /, 9 % 2 % % 3 #7 9 % 2 8 7 2 % 3 7 7 7 8 7 7 7 7 3 9 8 8 % 3! # 7 12 1191 1 ; % %

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

1984 1985 2130 1006 366 405 379 324 4601 2327 1169 524 555 440 361 5376 1984 51.4 31.8 56.2 2.6 45.4 28.3 29.8 16.7 44.2 34.9 665.4 10.1 1989 1990 1991 1992 1993 121.1 124.5 116.0 117.9 130.1 81.6

More information

目录 三种迭代格式 Jacobi 迭代法 Gauss-Seidel 迭代 超松弛迭代法 Jacobi 与 G-S 迭代的收敛性分析 收敛的充分必要条件 收敛的充分条件及误差估计 收敛速度 平均

目录 三种迭代格式 Jacobi 迭代法 Gauss-Seidel 迭代 超松弛迭代法 Jacobi 与 G-S 迭代的收敛性分析 收敛的充分必要条件 收敛的充分条件及误差估计 收敛速度 平均 线性方程组的古典迭代解法 目录 1 3.1 三种迭代格式 3.1.1 Jacobi 迭代法 3.1.2 Gauss-Seidel 迭代 3.1.3 超松弛迭代法 2 3.2 Jacobi 与 G-S 迭代的收敛性分析 3.2.1 收敛的充分必要条件 3.2.2 收敛的充分条件及误差估计 3 3.3 收敛速度 3.3.1 平均收敛速度和渐近收敛速度 3.3.2 模型问题 3.3.3 Jacobi 和

More information

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 : !! # % & % () + (. / 0 ) 1 233 /. / 4 2 0 2 + + 5. 2 / 6 ) 6. 0 ) 7. 8 1 6 / 2 9 2 :+ ; < 8 10 ; + + ( =0 41 6< / >0 7 0?2) 29 + +.. 81 6> Α 29 +8 Β Χ + Δ Ε /4 10 )+ 2 +. 8 1 6 > 2 9 2 : > 8 / 332 > 2

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

More information

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ ! # % ( ) +. / 0 1 + 2+ 3 4. 56. / 7 8 9 8. 6 2 # :! # # ( : : :! ( = = ( = > > : > : (? : : # : :! :!? : ( : # Α Β Α # : Α > % : Α : Α ( Χ #! Χ # Δ Χ ( Χ ( Φ Χ : Χ ( Χ ( #! / 2 (!( Α Α ( Α Α : =! Γ6 Α

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

08_toukei03.dvi

08_toukei03.dvi 2013 61 1 123 134 c 2013 2012 6 28 8 28 9 5 LDPC Low-Density Parity-Check LDPC MIMO 1. 2002 Feldman LP Feldman, 2003; Feldman et al., 2005 Feldman Vontobel and Koetter 2006 Koetter and Vontobel 2003 Burshtein

More information

6.3 正定二次型

6.3 正定二次型 6.3 正定二次型 一个实二次型, 既可以通过正交变换化为标准形, 也可以通过拉格朗日配方法化为标准形, 显然, 其标准形一般来说是不惟一的, 但标准形中所含有的项数是确定的, 项数等于二次型的秩 当变换为实变换时, 标准形中正系数和负系数的个数均是不变的 定理 ( 惯性定理 ) 设有二次型 f =x T Ax, 它的秩为 r, 如果有两个实的可逆变换 x=c y 及 x=c z 分别使 f =k

More information

Υ 2 Δ Υ 1 = 1 : Φ Υ 1 Ω 5 ς ) Ν + Φ 5 ς ς Α+ ) Ν Φ 6 Ξ ς Α+ 4 Φ Ψ Ψ + = Ε 6 Ψ Ε Ε Π Υ Α Ε Ω 2? Ε 2 5 Ο ; Μ : 4 1 Ω % Β 3 : ( 6 Γ 4 Ρ 2 Ρ

Υ 2 Δ Υ 1 = 1 : Φ Υ 1 Ω 5 ς ) Ν + Φ 5 ς ς Α+ ) Ν Φ 6 Ξ ς Α+ 4 Φ Ψ Ψ + = Ε 6 Ψ Ε Ε Π Υ Α Ε Ω 2? Ε 2 5 Ο ; Μ : 4 1 Ω % Β 3 : ( 6 Γ 4 Ρ 2 Ρ # % & & ( & ) +,. / 0 11 + 23 4 4 5 6 7 %+ 8 9 : ; 8 < %+ % = 4 )>? > Α ( 8 % 1 1 Β Χ > Χ Δ Χ Β > Ε) > 4 > Ε) Φ Δ 5 Γ + % 8 + %. < 6 & % &. : 5 Η+ % Ι & : 5 &% + 8 ) : 6 %, 6, + % 5 ϑ # & > 2 3 Χ Δ Α ;

More information

Copyright c by Manabu Kano. All rights reserved. 1

Copyright c by Manabu Kano. All rights reserved. 1 997 2002 5 Copyright c 997-2002 by Manabu Kano. All rights reserved. 3 2 4 2.... 4 2.2... 4 2.3 m... 7 2.4... 8 3 8 3.... 8 3.2... 9 4 0 4.... 0 4.2... 2 4.3... 3 2 2 0 Fig. z z 0 z z 2 z 2 PCA; Principal

More information

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

More information

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9! # %!!! ( ) ( +, +. ( / 0 1) ( 21 1) ( 2 3 / 4!! 5 6 7 7! 8 8 9 : ; < 9 = < < :! : = 9 ; < = 8 9 < < = 9 8 : < >? % > % > % 8 5 6 % 9!9 9 : : : 9 Α % 9 Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3

More information

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5 0 ( 1 0 % (! # % & ( ) + #,. / / % (! 3 4 5 5 5 3 4,( 7 8 9 /, 9 : 6, 9 5,9 8,9 7 5,9!,9 ; 6 / 9! # %#& 7 8 < 9 & 9 9 : < 5 ( ) 8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, 5 4

More information

.., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #( # ( 1 (

.., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #( # ( 1 ( ! # %! % &! # %#!! #! %!% &! # (!! # )! %!! ) &!! +!( ), ( .., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #(

More information

# % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2

# % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2 !!! #! # % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2 % ) 1 1 3 1 4 5 % #! 2! 1,!!! /+, +!& 2! 2! / # / 6 2 6 3 1 2 4 # / &!/ % ). 1!!! &! & 7 2 7! 7 6 7 3 & 1 2 % # ) / / 8 2 6,!!! /+, +! & 2 9! 3 1!! % %

More information

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m + 2012 12 Chinese Journal of Applied Probability and Statistics Vol.28 No.6 Dec. 2012 ( 224002) Euclidean Lebesgue... :. : O212.2 O159. 1.. Zadeh [1 2]. Tanaa (1982) ; Diamond (1988) (FLS) FLS LS ; Savic

More information

1#

1# ! # % & ( % + #,,. + /# + 0 1#. 2 2 3 4. 2 +! 5 + 6 0 7 #& 5 # 8 % 9 : ; < =# #% > 1?= # = Α 1# Β > Χ50 7 / Δ % # 50& 0 0= % 4 4 ; 2 Ε; %5 Β % &=Φ = % & = # Γ 0 0 Η = # 2 Ι Ι ; 9 Ι 2 2 2 ; 2 ;4 +, ϑ Α5#!

More information

小儿疾病防治(四).doc

小儿疾病防治(四).doc ...1...3...6...10...12...13...14...15...17...20...21...22...23...23...24...25 B...28...31...32 I ...33...35...37...40...41...43 X...44...45...47...49...50...52...52...54...56...57...59...61...62...62...63...66

More information

3?! ΑΑΑΑ 7 ) 7 3

3?! ΑΑΑΑ 7 ) 7 3 ! # % & ( ) +, #. / 0 # 1 2 3 / 2 4 5 3! 6 ) 7 ) 7 ) 7 ) 7 )7 8 9 9 :5 ; 6< 3?! ΑΑΑΑ 7 ) 7 3 8! Β Χ! Δ!7 7 7 )!> ; =! > 6 > 7 ) 7 ) 7 )

More information

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9 !! # % # & ( & ) #, #,., # / 01. 0 3 4 4!! 5 6 7 6 7 8 9 : 9 ; 6 1 7 < 1? :! ; = >, 8 8 9 ; Α < 1 6 7 Β 6 7 6. Χ : 9 8? 9 ; 7 8? 9 ; = = Δ Ε Φ Γ 5 =!!? ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν

More information

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0 / 0 1 0 3!! # % & ( ) ( + % & ( ) &, % &., 45 6!! 7 4 8 4 8 9 : ;< 4 8 3!, 3 9!! 4 8 ; ; 7 3 = 4 8 = > 8? 6 10 1 4 8 = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0

More information

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ; ! # % & ( ) ( +, +. ( /0!) ( 1!2!) ( 3 4 5 2 4 7 8 9: ; 9 < : = ; ; 54 ; = ; ; 75 ; # ; 9 : ; 9 : ; ; 9: ; ; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; 54 9 9: ; ;

More information

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ > ! # %& ( +, &. / ( 0 # 1# % & # 2 % & 4 5 67! 8 9 : ; < 8 = > 9? 8 < 9? Α,6 ΒΧ : Δ 8Ε 9 %: ; < ; ; Δ Φ ΓΗ Ιϑ 4 Κ6 : ; < < > : ; : ;!! Β : ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46

More information

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ .................................2.......................... 2.3.......................... 2.4 d' Alembet...................... 3.5......................... 4.6................................... 5 2 5

More information

( CIP).:,3.7 ISBN TB CIP (3) ( ) ISBN O78 : 3.

( CIP).:,3.7 ISBN TB CIP (3) ( ) ISBN O78 : 3. ( CIP).:,3.7 ISBN 7 568 383 3.......... TB CIP (3) 334 3 37 ( ) 64536 www.hdlgpress.com.c 7879 6 9.75 479 3 7 3 7 45 ISBN 7 568 383 3O78 : 3. 995,.,.,.,. :,,,,.. :,,,,,,.,,,,.,,. ,,.,,,.,,,.,,,,.,.,,,

More information

扩充矩阵 给定矩阵 A 和向量 b a 11 a 12 a 13 b 1 A = a 21 a 22 a 23 b = b 2 a 31 a 32 a 33 b 3 定义扩充矩阵 ( A b ) = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 b 1 b

扩充矩阵 给定矩阵 A 和向量 b a 11 a 12 a 13 b 1 A = a 21 a 22 a 23 b = b 2 a 31 a 32 a 33 b 3 定义扩充矩阵 ( A b ) = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 b 1 b 数值代数 夏银华 中国科学技术大学 扩充矩阵 给定矩阵 A 和向量 b a 11 a 12 a 13 b 1 A = a 21 a 22 a 23 b = b 2 a 31 a 32 a 33 b 3 定义扩充矩阵 ( A b ) = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 b 1 b 2 b 3 初等变换矩阵 放缩 (scaling): 第 i 个方程

More information

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε (! # # %& ) +,./ 0 & 0 1 2 / & %&( 3! # % & ( ) & +, ), %!,. / 0 1 2. 3 4 5 7 8 9 : 0 2; < 0 => 8?.. >: 7 2 Α 5 Β % Χ7 Δ.Ε8 0Φ2.Γ Φ 5 Η 8 0 Ι 2? : 9 ϑ 7 ϑ0 > 2? 0 7Ε 2?. 0. 2 : Ε 0 9?: 9 Κ. 9 7Λ /.8 720

More information

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9 ! # %& ( %) & +, + % ) # % % )./ 0 12 12 0 3 4 5 ). 12 0 0 61 2 0 7 / 94 3 : ;< = >?? = Α Β Β Β Β. Β. > 9. Δ Δ. Ε % Α % Φ. Β.,,.. Δ : : 9 % Γ >? %? >? Η Ε Α 9 Η = / : 2Ι 2Ι 2Ι 2Ι. 1 ϑ : Κ Λ Μ 9 : Ν Ο 0

More information

国民体质监测相关名词释义.doc

国民体质监测相关名词释义.doc 国 民 体 质 监 测 相 关 名 词 释 义 1 体 质 的 概 念 体 质 是 指 人 体 的 质 量, 是 在 先 天 遗 传 因 素 和 后 天 环 境 因 素 共 同 影 响 下 表 现 出 来 的 人 体 形 态 结 构 生 理 功 能 和 心 理 功 能 等 综 合 的 相 对 稳 定 的 特 征 体 质 随 着 年 龄 的 增 长 而 发 生 变 化, 成 年 后 体 质 呈 现 下

More information

-2 4 - cr 5 - 15 3 5 ph 6.5-8.5 () 450 mg/l 0.3 mg/l 0.1 mg/l 1.0 mg/l 1.0 mg/l () 0.002 mg/l 0.3 mg/l 250 mg/l 250 mg/l 1000 mg/l 1.0 mg/l 0.05 mg/l 0.05 mg/l 0.01 mg/l 0.001 mg/l 0.01 mg/l () 0.05 mg/l

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7 ! # % & ( ) +, + )% ). )% / 0 1. 0 3 4 5 6 7 8 7 8 9 : ; < 7 ( % ; =8 9 : ; < ; < > ;, 9 :? 6 ; < 6 5 6 Α Β 5 Δ 5 6 Χ 5 6 5 6 Ε 5 6 Ε 5 5 Β Χ Χ Α Β 7 8 9 Φ 5 6 9 Φ ; < # 9 Φ ; < # 7 8 5 5 < % Γ & (,,,,

More information

厨房小知识(四)

厨房小知识(四) I...1...2...3...4...4...5...6...6...7...9...10... 11...12...12...13...14...15...16...17...18...18...19...22...22 II...23...24...25...26...27...27...28...29...29...30...31...31?...32...32...33?...33...34...34...35...36...36...37...37...38...38...40

More information

妇女更年期保健.doc

妇女更年期保健.doc ...1...2...3...5...6...7 40...8... 11...13...14...16...17...19...20...21...26...29...30...32 I ...34...35...37...41...46...50...51...52...53...54...55...58...64...65 X...67...68...70...70...74...76...78...79

More information

小儿传染病防治(上)

小儿传染病防治(上) ...1...2...3...5...7...7...9... 11...13...14...15...16...32...34...34...36...37...39 I ...39...40...41...42...43...48...50...54...56...57...59...59...60...61...63...65...66...66...68...68...70...70 II

More information