Size: px
Start display at page:

Download ""

Transcription

1

2

3 Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics THEORETICAL MODELING AND ANALYSIS OF NEURONAL DENDRITIC INTEGRATION SONGTING LI Supervised by Prof. DAVID CAI Prof. DOUGLAS ZHOU DEPARTMENT OF MATHEMATICS SHANGHAI JIAO TONG UNIVERSITY SHANGHAI, P.R.CHINA November 214

4

5 献给我的家人

6

7

8

9

10

11 ,.,,..,..,.,,.,.,.,, HH IF.,,.,., -.,.,.,,.,., - - -,.,,. i

12 ,.,.,.,IF., IF, DIF., DIF., DIF,.,.,, IF HH, DIF DHH., DHH, HH,..,,.,,.,,.,..,..,,.,,,,,, ii

13 ABSTRACT THEORETICAL MODELING AND ANALYSIS OF NEURONAL DENDRITIC INTEGRATION ABSTRACT A neuron, as a fundamental unit of brain computation, exhibits great computational power in processing input signals from neighboring neurons. It receives thousands of spatially distributed synaptic inputs from its dendrites and then integrates them at the soma, leading to the neuronal information processing. This procedure is called dendritic integration. Dendritic integration rules are under active investigation in order to elucidate information coding in the brain. In the thesis, we present our work on theoretical modeling and analysis of dendritic integration in the following six chapters. To be specific, we introduce the background knowledge in Chapter 1 and Chapter 2, and introduce our own research work from Chapter 3 to Chapter 6. In Chapter 1, we introduce basic neurophysiology for mathematicians who are not familiar with neuroscience. We also review the current progress in the experimental and theoretical investigation on dendritic integration. We finally point out the scientific contribution and novelty of our work. In Chapter 2, we introduce two types of neuron models to characterize neuronal electrophysiological properties described in Chapter 1. A neuron can be modeled as an idealized point with electrical circuit structure, such as the HH model and the IF model. On the other hand, a neuron can also be modeled as a spatially extended tree with conductive cable structure, such as the two-compartment and multi-compartment cable models. All these models can describe neuronal behavior effectively in different aspects, therefore, they will be used in our following theoretical study of dendritic integration. In Chapter 3, we reveal theoretically the underlying mechanism of a dendritic in- iii

14 tegration rule for a pair of excitatory (E) and inhibitory (I) synaptic inputs discovered in a recent experiment. Starting with the two-compartment neuron model, we construct its Green s function and carry out an asymptotic analysis to obtain its solutions. Using these asymptotic solutions, in the presence of E-I inputs, we can fully explain all the experimental observations. We then extend our analysis with multi-compartment neuron model to characterize the E-I dendritic integration on dendritic branches. The novel characterization is confirmed by a numerical simulation of a biologically realistic neuron as well as published experimental results. In Chapter 4, we theoretically generalize the dendritic integration rule in Chapter 3 to describe the spatiotemporal dendritic integration for all types of inputs, including a pair of E-I, E-E, I-I inputs and multiple inputs with mixed types. In addition, the general dendritic integration rule is valid at any time during the dendritic integration process for inputs with arbitrary arrival time difference. The general rule is derived analytically from the two-compartment neuron model. However, we also verify it in a simulation of the realistic neuron and in experiments. The general rule finally leads us to a novel graph representation of the dendritic integration process, which is demonstrated to be functionally sparse. In Chapter 5, we address the theoretical issue of how much the dendritic integration rule discovered in the experiment can be accounted for using the somatic membrane potential dynamics described by the point neuron model. We demonstrate both analytically and numerically that the IF model can explain partial of the experimental results. Inspired by a two-port analysis, we then modify the IF model to the DIF model to characterize all the experimental observations. Meanwhile, the DIF model provides experimental testable predictions. In Chapter 6, we systematically investigate the performance of the point neuron models in characterizing the spatiotemporal dendritic integration effect. We demonstrate numerically that, compared with the standard IF model and HH model, our DIF model and DHH model can accurately capture the membrane potential produced by the two-compartment neuron model with a passive or an active soma, respectively. In particular, our DHH model can accurately predict the spike time of the two-compartment neuron model, whereas the prediction error made by the HH model is significantly iv

15 ABSTRACT large. In addition, the HH model occasionally predicts a fake spike. The scientific contribution and the novelty of our work can be summarized as follows. First, the nonlinearity in the cable equation with time-dependent synaptic inputs makes its analytical solution difficult to obtain. Here we analytically solve the cable equation via the asymptotic analysis, and apply the asymptotic solutions to reveal the underlying mechanism of the dendritic integration rule discovered experimentally. In addition, the previous research work on dendritic integration are mainly qualitative and specific. Here we propose a general dendritic integration rule to quantitatively describe dendritic integration for all types of synaptic inputs. The general rule is further confirmed in the realistic simulations and real experiments. Moreover, point neuron models are considered only to describe the somatic membrane potential in previous works. Here we incorporate the dendritic integration effect into point neuron models successfully. Contrast to the cable model, our effective point neuron model can be potentially used in a large scale simulation of a network of neurons with dendrites to reduce the computational cost. KEY WORDS: dendritic integration, synaptic integration, neuronal computation, cable theory, Green s function, asymptotic analysis, point neuron model v

16

17 ABSTRACT i iii vii xiii xv HH vii

18 2.1.2 IF viii

19 IF DIF DIF DHH ix

20 x

21 IF κ EI xi

22 IF IF IF β κ M κ DIF DIF DIF DIF DIF DHH DHH DHH xii

23 6 8 DHH DHH xiii

24

25 v v r v th g E f E ε E g I f I ε I g L ε L g Na E Na g K E K G E G I c S d l xv

26

27 ,. [1, 2], (synapse),,..,,.. 1.1,,.,, 1 1.,., (dendrites), (soma) (axon), ,, 1 2. (presynaptic), (postsynaptic).,,, ( )., ,.. 1

28 神经元树突整合的理论模型与分析 上海交通大学博士学位论文 A B C D E F 图 1 1 神经元的多样性. (A) 椎体神经元, 记录自猕猴前额叶皮层 [3], 长约 696µm. (B) 星型 神经元, 记录自小鼠内嗅皮层 [4], 长约 39 µm. (C) 蒲氏神经元, 记录自大鼠小脑 [5], 长约 118µm. (D) 篮状神经元, 记录自大鼠体感皮层 [6], 长约 267µm. (E) 颗粒神经元, 记录自大鼠 海马区 [7], 长约 288µm. (F) 运动神经元, 记录自猫的脊髓 [8], 长约 1.5mm. 以上数据均下载 自 NeuroMorpho.Org [9]. Fig 1 1 The diversity of neuronal morphology. (A) A pyramidal cell in macaque prefrontal cortex with a length of 696µm [4] [3]. (B) A stellate cell in rat entorhinal cortex with a length of 39 µm. (C) A Purkinje cell in mouse cerebellum with a length of 118µm [5]. (D) A basket cell in rat somatosensory cortex with a length of 267µm [6]. (E) A granule cell in rat hippocampus with a length of 288µm [7]. (F) A motor neuron in cat spinal cord with a length of 1.5mm [8]. All data is downloaded from NeuroMorpho.Org [9]. 2

29 1 2..,,,,.,,.,. [1]. Fig 1 2 The typical structure of a neuron. The postsynaptic neuron receives synaptic inputs from a presynaptic neuron. When an action potential is initiated and propagated to the axon terminal of the presynaptic neuron, neurotransmitters will be released. These neurotransmitters will bind to some specific channel receptors and invoke the open of the ion channels in the postsynaptic neuron. Consequently, the ionic currents will flow inward or outward the membrane thus change the local membrane potential of the postsynaptic neuron. The ionic currents inside the postsynaptic neuron will then flow towards the soma along the dendrites. In the end, the soma integrates all synaptic inputs and generates an action potential at the axon hillock once its membrane potential crosses a certain threshold. The action potential will then prorogate along the axon towards the downstream neurons. Figure is modified from Ref. [1]. 3

30 , [11 13] ,. (threshold), (axon hillock) 1ms 2ms, 1mV, (action potential) (myelin),,, 1mV.,. (receptor),,. (chemical synapse)., ( ). 1.2,., (ion channel),. (gated) (nongated)., (leak).,,..,,.,,.,,,,. (reversal potential).,. 4

31 . x [C](x), ϕ(x), (Fick s law), J diff J diff = D [C] x, D,. J diff..,,,. J drift J drift = µz[c] ϕ x. µ (mobility), z (valence)., J total = D [C] x µz[c] ϕ x., D µ, D = k BT q µ, k B, T, q. J total = k BT q µ [C] x µz[c] ϕ x. (1 1) (1 1) Nernst-Planck., ( ). ϕ x = k BT [C] zq[c] x. Nernst (1 2) E ϕ in ϕ out = k BT zq ln [C] in [C] out. (1 2) 5

32 E. K + [14],, 5mM, 14mM. 37 o C, k B T /q = 26.73mV, E K = 62 ln ( 14) = 89.7mV. 5,, -7mV. (resting potential).,.,,,,. (hyperpolarization)., E Na = +55mV.,,,,. (depolarization).,, , -7mV.,., Nernst-Planck (1 1).,,,.,, Nernst-Planck.,, Goldman, Hodgkin Katz [15, 16]. Nernst-Planck 6

33 v r, ϕ(x) x, l, dϕ/dx = v r /l., µ., η,, [C], η[c]., Nernst-Planck J = µ k BT q η [C] x µ zη[c] v r l, < x < l [C]() = [C] in, [C](l) = [C] out. [17] ( e λ [C] out [C] ) in J = P λ, e λ 1 P = µ ηk B T lq (permeability).. λ λ = zqv r k B T. Na +,K + Cl,,, J Na + J K + J Cl =. v r = k BT q ( PNa [Na] out + P K [K] out + P Cl [Cl] ) out ln P Na [Na] in + P K [K] in + P Cl [Cl] in (1 3) 7

34 (1 3) Goldman-Hodgkin-Katz (GHK). [14], P K : P Na : P Cl = 1 :.3 :.1, [K] in = 4mM, [Na] in = 5mM, [Cl] in = 4mM, [K] out = 1mM, [Na] out = 46mM, [Cl] out = 54mM. (1 3) 74mV,. GHK (1 3), Nernst (1 2). 1.4.,,. ( -55mV), [18, 19]...,. 1 3,,,.,. 1.2,,,.,,,.,.,,. 1ms 2ms, 1mV.,,,. (refractory period).,,,,., 8

35 E Na V Na + channels close Na + channels open K + channels open Threshold V R E K Refractory period time 1 3.,,.,,,. [14]. Fig 1 3 The action potential. During the upstroke, Na + channels are open and the membrane potential approaches the Na + reversal potential. During the downstroke, Na + channels are closed, K + channels are open, and the membrane potential approaches the K + reversal potential. Figure is modified from Ref. [14]. 9

36 ,., ,.,,.,. (EPSP).,,. (IPSP).. (glutamate), AMPA NMDA. AMPA. NMDA,. EPSP, mv., AMPA, NMDA.,,,., AMPA. γ- (GABA), GABA A GABA B. GABA A,, -8mV,, IPSP. GABA A, IPSP,., GABA B,,,.,, -1mV., GABA A, GABA B. 1

37 1.6 [2].,,, [21] [22]., [23, 24], [12, 25].,,,,.,.,,..,, [12, 26].,.,,. (passive).,,,.,.,.,,,., [27]., EPSP EPSP [27]., EPSP EPSP., 11

38 Excitatory Input EPSP EPSP EPSP ( ). +,. Fig 1 4 Passive dendritic filtering effect. Activation of a excitatory input on an apical dendrite produces a local EPSP that is larger and faster than the EPSP recorded at more proximal locations and at the soma (as indicated by recording electrode symbols). The ion concentration is indicated by + and the current flow is indicated by arrows , [28]., 1-2µm, 2µm.,,.,,,.. [26]..,, (Summed Somatic Potential, SSP). 12

39 ,, EPSP,., EPSP, EPSP..,,.,, (driving force), EPSP.,, EPPS.,,, [29], [3, 31] [32]. [33]., [34]., [35, 36]. H, [37]... [38, 39] [19].,,.,.,,.,,,,.,,.,., 13

40 ,,,,,. 4:1 [4].., [41 44]., [45] γ [46].., [47], [48] [49], [5 52]. [53].,, (hyperpolarization) (shunting inhibition).,.,. [54, 55].,,,. [55, 56]. [57],, IPSP,,, , [17, 58].,.,,. 14

41 Excitatory input Inhibitory input EPSP IPSP SSP 1 5. ( ) ( )., IPSP ( ).,, ( SSP) EPSP ( ) IPSP ( ).. Fig 1 5 The interaction between a pair of excitatory and inhibitory inputs. A single excitatory synapse (circle) on an apical dendrite is shunted by an inhibitory synapse (triangle) on the path between the synapse and the soma. Note that the individual IPSP amplitude is nearly zero (middle) when the inhibitory input is given alone. However, when both inputs are given, the summed somatic potential (SSP on the right) is much smaller than the sum of the individual EPSP (left) and IPSP (middle). Three recording sites are indicated by recording electrode symbols.,.,, [58, 59].,.,Wilfrid Rall [6], (cable theory) [61, 62].,,.,..,, [63] 15

42 ,.,., [58].,., [64, 65],,.,,., [61].., :EPSP, [66, 67]. [68, 69].,, [7] , :,,,.,,.,,.,, -,,,..., ( 2.1)., 16

43 . PDE, ODE,. 17

44

45 .,., ,.,, ,,.,.,. 2 1,.,,., I cap = dq dt, 19

46 A C v B g V reversal I inj c 2 1. (A). 3-5nm.. [71]. (B).,.,,.,. (C). Fig 2 1 Equivalent circuit model. (A) Schematic representation of a small patch of typical membrane. The 3-5nm thin bilayer of lipids isolates the extracellular side from the intracellular side. From an electrical point of view, the resultant separation of charge across the membrane acts as a capacitance. Ion channels inserted into the membrane provide a conduit through the membrane. Figure is modified from Ref. [71]. (B) The associated electrical circuit for this patch consisting of a capacitance and a conductance in series with a battery. The conductance mimics the behavior of ion channels inserted throughout the membrane and the battery accounts for the ion channel s reversal potential. Note that here we only consider one type of ion channel, however, multiple types of channels can be connected in parallel. (C) The electrical circuit representation for the whole membrane. 2

47 q. c, v, q = cv. I cap = c dv dt. (2 1),., c = 1µF/cm 2[72]., [73] I leak = g L (v ε L ), (2 2) g L ( ). ε L.,., I inj,, I cap + I leak = I inj. c dv dt = g L(v ε L ) + I inj. (2 3), I Na I Na = g Na (v E Na ), g Na, E Na. I K I K = g K (v E K ), g K, E K. (2 3) c dv dt = g L(v ε L ) g Na (v E Na ) g K (v E K ) + I inj. (2 4) g L,, g Na,g K v, g L v., (2 4),. g Na g K

48 2.1.1 HH HH Hodgkin Huxley 1952 [74], , HH., c dv dt = g L(v ε L ) g Na (v E Na ) g K (v E K ) + I inj. g Na g K. g Na g K,. (voltage clamp),., I inj [75]., v, g Na g K, I cap = cdv/dt.,. g L.,,,. I inj,, g L ε L. I inj g L (v ε L ). (2 5) mv. 2 2,, I inj,..,,.,. Hodgkin Huxley., 22

49 I K I inj I Na Time (ms) -65 mv mv 2 2. mv.,.. Fig 2 2 Numerically computed voltage-clamp experiment. The membrane potential is stepped from the resting potential to mv. This result indicates an inward current followed by an outward current. The K + and Na + currents are also shown here. 23

50 ., I inj I K.,, g K g K (v) = I K v E K.,, I Na = I inj I K. g Na g Na (v) = I Na v E Na. 2 3 g Na g K 4. g Na g K.,, g Na., g K.., ( ) m ( ) h.., m h., m,., h,,.,, Hodgkin Huxley g K = ḡ K n 4, g Na = ḡ Na m 3 h, (2 6) ḡ K ḡ Na, n,m h,, 1. n 4 :,. m 3 h :.,. 24

51 4 V C (mv) 4 g 2 2 Na (ms / cm ) (ms / cm ) g K Time (ms) Fig 2 3 The voltage dependence of the sodium and potassium conductances in simulation. The membrane potential is stepped to different values and the resulting K + and Na + conductances are obtained numerically (m,n h),,,., C α(v) O, β(v) C O, α(v), β(v),. r (r = m, n, h), 1 r,, dr dt = α r(v)(1 r) β r (v)r. (2 7) 25

52 (2 7) dr dt = 1 τ r (v) (r r), (2 8) (2 8) r = τ r = α r (v) α r (v) + β r (v), 1 α r (v) + β r (v). r(t) = r (v) + (r() r (v))e t/τr(v), (2 9) r(). (2 9), v, r τ r (v) r (v)., Hodgkin Huxley, α n (v) =.1(v + 55) 1 exp( (v + 55)/1), β n (v) =.125exp( (v + 65)/8), α m (v) =.1(v + 4) 1 exp( (v + 4)/1), β m (v) = 4exp( (v + 65)/18), α h (v) =.7exp( (v + 65)/2), β h (v) = exp( (v + 35)/1). HH ḡ Na = 12mS/cm 2, ḡ K = 36mS/cm 2, E Na = +5mV, E K = 77mV, g L =.3mS/cm 2, ε L = 54.4mV. 26

53 steady state 1 h.8.6 m.4.2 n V (mv) (ms) 8 h 6 n 4 2 m V (mv) Fig 2 4 Gating variable functions. Left is the steady-state opening of the gates and right is their corresponding time constants. 2 4, n m,, mv 1.,, n m., h,,., τ m τ n τ h,,,, IF HH,.,,.,,. HH - (Integrate-and-Fire, IF) [73] c dv dt = g L(v ε L ) + I inj. (2 1) IF (2 1),. v v th,, v ε L,

54 -55 mv -7 mv na Time (ms) IF. IF 2nA., -7mV, -55mV. ( ) IF, ( ). Fig 2 5 Response of the IF model to a 2nA step current. The resting potential is set to be -7mV and the threshold is set to be -55mV. The action potential (marked by grey) is removed from the IF model and the voltage at the threshold (marked by red) is reset to the resting potential immediately. IF 197 [73]., IF [76, 77]. IF c = 1µF/cm 2, g L =.5mS/cm ,,. 1.6,,.,., Wilfrid Rall [6],.,,,. 28

55 2.2.1 (compartment), 2 6. [17, 72],. [x, x + x], d, πd x.,, πd x(i cap + I leak I inj ) = I long (x) I long (x + x). I long. I cap I leak (2 1) (2 2), cπd x v t = g Lπd x(v ε L ) + πd xi inj + I long (x) I long (x + x). (2 11) I long. [x, x + x], R a R a = r a 4 x πd 2. r a., [x, x + x] x, I long = πd2 v(x) v(x + x). 4r a x I long (x) = πd2 4r a v x. (2 12) (2 12) (2 11), cπd x v t = g Lπd x(v ε L ) + πd xi inj πd2 v 4r a x + πd2 v x 4r a x. (2 13) x+ x (2 13) x, c v t = g L(v ε L ) + I inj + d 4r a 2 v x 2. (2 14) (2 14),.. 29

56 I cap (x,t) I leak (x,t) I inj (x,t) d I long (x,t) I long (x+ x,t) x x x+ x ( ),. Fig 2 6 Passive cable model. Upper, a schematic plot of a neuron. Lower, the cable model with different current sources representing a small segment of the neuron s dendrites (marked by the black box). 3

57 A B C 2 7.(A). (B). (C). Fig 2 7 Spatial neuron model. (A) A schematic plot of a pyramidal neuron. (B) Two-compartment model. (C) Multi-compartment model (two-compartment). 2 7.B, l d, S.,.,,.,, (2 14) x = l v x =. (2 15) x=l,,, cs vs t = g LSv s + I dend, v s, I dend, (2 12) x =., 31

58 v s (t) = v(, t), x = v(, t) c = g L v(, t) + πd2 v t 4Sr a x. (2 16) x= 2.2.3,,, (multi-compartment). 2 7.C,, ,2,...,n + 1 l 1,l 2,...,l n+1, d 1,d 2,...,d n+1. 1 n n + 1., πd2 n+1 v n+1 4r a = xn+1 =l n+1 x n+1 n j=1 πd 2 j 4r a v j x j xj =. v n+1 (l n+1, t) = v 1 (, t) = v 2 (, t) =... = v n (, t). (2 17), (2 15),, (2 16). 32

59 ,. 1.6.,,., [59].,, [59]., [59], [59]. 3.1 [59]. 3 1.A., EPSP,.,, IPSP,.,, (summed somatic potential, SSP). [59], SSP EPSP IPSP (linear sum), 3 1.B. SSP EPSP+IPSP (shunting component, SC), V SC (t) V S (t) V E (t) V I (t), (3 1) V SC, V S, V E, V I SSP, EPSP, IPSP. EPSP t p, EPSP, IPSP SSP V E (t p ),V I (t p ) V S (t p ). 33

60 A B EPSP Linear sum SSP IPSP SC 5 ms 2 mv C D 2 (mv) SC 4 2 E: µm I : 53-7 µm 2 4 IPSP (mv) (mv) SC 1 E: µm I: 8-1 µm 5 1 EPSP (mv) [59]. (A). ( 232µm 129µm). 1µm. (B), EPSP, IPSP, SSP, SC, Linear sum. SC SSP Linear sum. (C) EPSP (9-1mV), SC IPSP.. R=.974. (D) IPSP ( mV), SC EPSP.. R=.965. [59]. Fig 3 1 Dendritic integration of a pair of excitatory and inhibitory inputs in experiments [59]. (A) Image of a rat CA1 pyramidal neuron. Arrows indicate excitatory and inhibitory input locations (at 232 and 129µm from the soma, respectively). (Scale bar: 1µm.) (B) Examples of EPSP, IPSP, SSP, SC and their linear sum response to a pair of concurrent excitatory and inhibitory inputs. SC is defined as the difference between the SSP and the linear sum. (C) SC vs. IPSP amplitude, measured for a fixed EPSP amplitude (9 1 mv). Data are from four cells. Line indicates linear fit (R=.974). (D) SC vs. EPSP amplitude, measured for a fixed IPSP amplitude ( mv). Data are from four cells. Line indicates linear fit (R=.965). Figures are modified from Ref. [59]. 34

61 [59],,,, t p, V SC (t p ) V I (t p ) ( 3 1.C), V SC (t p ) V I (t p ).,,, t p, V SC (t p ) V E (t p ) ( 3 1.D), V SC (t p ) V E (t p )., t p SC IPSP EPSP, SC EPSP IPSP, [59], V SC /V I V E, V SC /V E V I.,, 3 2.A. V SC (t p ) = κv E (t p )V I (t p ). κ, EPSP IPSP., V SC (3 1), t p, V S (t p ) = V E (t p ) + V I (t p ) + κv E (t p )V I (t p ). (3 2) [59] κ. 3 2.B,, κ,, κ,. 3.2 [59].,.., (i) κ,(ii) κ. κ. 35

62 ( or S C / I P SP ) S C / E P SP A IPSP (or EPSP ) (mv) - 1 ) mv ( κ B I (µm) E location (µm) (A) EPSP, SC EPSP IPSP ( ) SC IPSP EPSP ( ).. EPSP 1-1mV, IPSP.2-4mV µm. : R=.96, κ=.142, n=11; R=.92, κ=.145, n=1. (B) κ., κ,, κ.. [59]. Fig 3 2 Dendritic integration rule for a pair of excitatory and inhibitory inputs in experiments. (A) Ratio between measured SC and EPSP (SC/EPSP) plotted against IPSP (red circle) and SC/IPSP plotted against EPSP (blue square) at the time when EPSP reaches its peak value. Data are from the same cell in the slice recording. The amplitudes of the paired EPSP and IPSP were randomly set in the range of 1 1mV and.2 4mV, respectively. Excitatory and inhibitory input locations were fixed at 11µm and 45µm. Lines indicate linear fit (red: R=.96, slope κ=.142, n=11; blue: R=.92, slope κ=.145, n=1). (B) The shunting coefficient κ as a function of the excitatory input location. for a fixed location of the inhibitory input on the dendritic trunk, κ increases as the distance between the excitatory input and the soma increases when the excitatory input is located in between the soma and the inhibitory input, whereas κ remains almost constant when the excitatory input is located further away from the soma than the inhibitory input. Three different inhibitory input locations are marked by different colors. Figures are modified from Ref. [59]. 36

63 3.2.1,. I syn [63], I syn = g syn (v ε syn ). (3 3) g syn, v, ε syn. g syn,,. g syn [72] g syn = fg(t), f, g(t), g(t) = N(e t σ d e t σr )Θ(t), (3 4) σ r g(t), σ d g(t), Θ(t) Heaviside,, N g(t) 1, ( σr ) σr σ N = [ d σr σ d ( σr ) σd σ d σr ] 1. σ d,,,. ( B),, l, d., -., cπd x v t = g Lπd xv + I syn + I long (x) I long (x + x), (3 5) v ( v = mv), c, g L. I syn, I syn = πd q=e,i x+ x x 37 G q (v ε q )dx,

64 G E G I, ε E ε I. x = x E, x = x I, G E (x, t) = f E g E (t)δ(x x E ), G I (x, t) = f I g I (t)δ(x x I ). f E f I. g E g I (3 4), t g E (t) = N E (e σ Ed e t σ Er )Θ(t), g I (t) = N I (e t σ Id e t σ Ir )Θ(t) I long (2 12), (3 5) x, c v t = g Lv q=e,i f q g q (t)δ(x x q )(v ε q ) + d 4r a 2 v x 2. (3 6) r a , v x =, (3 7) x=l v(, t) c t = g L v(, t) + πd2 4Sr a v x. (3 8) x= S., v(x, ) =. (3 9) 3.2.3, (3 6) (3 7)-(3 9)., δ, G(x, y, t) c G t = g LG + d 2 G + δ(x y)δ(t), (3 1) 4r a x2 38

65 G(, y, t) c = g L G(, y, t)+ πd2 G(x, y, t) t 4Sr a x, x= G x =, and G(x, y, ) =. x=l, τ = t/c, ξ = x 4r a /d, η = y 4r a /d, λ = l 4r a /d, (3 1) H τ = g LH + 2 H + δ(ξ η)δ(τ), (3 11) ξ2 H(, η, τ) τ = g L H(, η, τ)+γ H(ξ, η, τ) ξ, ξ= H ξ =, and H(ξ, η, ) =, ξ=λ γ = πd2 r a d. 2S (3 11), LH(ξ, η, s) = A(η, s)e s+g L (ξ λ) + B(η, s)e s+g L (λ ξ) + e s+gl ξ η 2, (3 12) s + g L ( B(η, s) ), 1 s+gl [A(η, s) cosh( s + g L (λ ξ)) sinh( s + g L (η ξ))] for ξ η, LH(ξ, η, s) = 1 s+gl A(η, s) cosh( s + g L (λ ξ)) for ξ > η, (3 13) A(η, s) = (s + g L) sinh( s + g L η) + γ s + g L cosh( s + g L η) (s + g L ) cosh( s + g L λ) + γ s + g L sinh( s + g L λ). (3 14), (3 14) ζ(s). (3 13), (3 13), ζ(s) =. 39

66 ζ(s) =, LH(ξ, η, s). LH(ξ, η, s) LH(ξ, η, s) = n H n (ξ, η) s + k n, (3 15) H n (ξ, η) s, s = k n. (3 15), H(ξ, η, τ) = n H n (ξ, η)e k nτ. (3 16), (3 11), (3 16) k n H n (ξ, η). s = k n. w n = i k n + g L λ, ζ(s) = tan(w n ) = w n γλ, (3 17)., n 1, (3 17) w n (n 1/2)π < w n < (n + 1/2)π ; n =, w =. H n (ξ, η). s = k n C n,,., LH(ξ, η, s) ( 1 LHds = 2πi s C n LH (3 13)-(3 15) (3 18), ) 1. (3 18) s= kn H n (ξ, η) = γd n cos [w n (1 ξ/λ)] cos [w n (1 η/λ)], (3 19) D n = 2 [γλ + γλwn 1 sin(w n ) cos(w n ) + 2 cos 2 (w n )] 4

67 n. (3 1) G(x, y, t) G(x, y, t) = 4ra H(ξ, η, τ). (3 2) c 2 d I inj, (3 6). v(x, t) = G(x, y, t) I inj (y, t) (3 21),., (3 6) v,., (3 6),. (3 6), EPSP ( 5mV ), f E., IPSP ( -2mV ), f I. x E x I, v(x, t; x E, x I ) f E f I v = fe m fi n v mn (x, t; X ), (3 22) k=m+n=k X {x E, x I }. x E X m ; x I X n. (3 22) (3 6),,. O(1), c v t = g L v + d 4r a 2 v x 2. (3 23) (3 7)-(3 9), v =. (3 24),,. 41

68 O(f E ), c v 1 t = g L v 1 + d 4r a 2 v 1 x 2 + g E(t)δ(x x E )ε E, (3 25) (3 25) I syn = g E (t)δ(x x E )ε E,, (3 25) v 1 = G(x, x E, t) [ε E g E (t)]. (3 26).. (3 26) x E ε E g E (t), mv x E I syn = g E (t)( ε E )., v 1 v, v x E. O(fE 2 ), c v 2 t = g L v 2 + d 4r a 2 v 2 x 2 g E(t)δ(x x E )v 1. (3 27) (3 27) I syn = g E (t)δ(x x E )v 1, v 1 (3 26), (3 27) v 2 = G(x, x E, t) [ g E (t)v 1 (x E, t; x E )]. (3 28). (3 28) x E I syn = g E (t)v 1 (x E, t; x E ). 42

69 , v 2 v 1, v 1 x E.., O(f I ), O(fI 2 ), O(f E f I ), v 1 = G(x, x I, t) [ε I g I (t)]. (3 29) v 2 = G(x, x I, t) [ g I (t)v 1 (x I, t; x I )]. (3 3) c v 11 t = g L v 11 + d 4r a 2 v 11 x 2 g E(t)δ(x x E )v 1 g I (t)δ(x x I )v 1, (3 31) v 11 = G(x, x E, t) [ g E (t)v 1 (x E, t; x I )] + G(x, x I, t) [ g I (t)v 1 (x I, t; x E )]. (3 32) (3 6)., Crank-Nicolson,.1ms, 1µm. [58, 59], 3 1.,, 3 3., EPSP V E f E v 1 + fev 2 2, (3 33) IPSP SSP V I f I v 1 + f 2 I v 2, (3 34) V S = V E + V I + V SC, (3 35) V SC [59], V SC f E f I v 11. (3 36) 43

70 3 1. Table 3 1 Parameters for two-compartment neuron model. c 1. µf cm 2 g L.5 ms cm 2 ε L / mv ε E 7 mv ε I -1 mv S 9π µm 2 r a 1 Ω cm l 6 µm d 1 µm σ Er 5 ms σ Ed 7.8 ms σ Ir 6 ms σ Id 18 ms 3.2.5, (3 33)-(3 36)., SC V SC, (3 36)., κ = V SC V E V I v 11 (, t; x E, x I ) v 1 (, t; x E )v 1 (, t; x I ). (3 37) ( (3 33)-(3 36)), 3 3. (3 37) κ.,, f E f I EPSP IPSP. (3 37), κ (leading order) f E f I, κ EPSP IPSP. (3 2), κ (3 37). 44

71 A B C EPSP (mv) st 2nd n.s. 5 1 Time (ms) IPSP (mv) st 2nd n.s. 5 1 Time (ms) SSP (mv) st 2nd n.s Time (ms) 3 3. (A)EPSP. (B) IPSP. (C) SSP.,, (3 6) Fig 3 3 Asymptotic solutions of various orders for the two-compartment cable model (3 6) for (A) EPSP, (B) IPSP, and (C) SSP in comparison with numerical solutions of Eq. (3 6). The dashed blue line is the first order approximation. The red circle is the second order approximation. The black solid line is the numerical solution of the full Eq. (3 6). Parameters in our simulation can be found in Table 3 1. κ EPSP IPSP, 3 4.A. [59] κ, 3 2. ε E = 7mV ε I = 1mV, (3 26),(3 29) (3 32), (3 32) G(x, x E, t) [ g E (t)v 1 (x E, t; x I )]. (3 38) (3 32) v 11 v 11 G(x, x I, t) [ g I (t)v 1 (x I, t; x E )], (3 39) I syn = g I (t)v 1 (x I, t; x E ). x I v 1 (x I, t; x E ). (3 39), x I, κ κ G(, x I, t) [ g I (t)v 1 (x I, t; x E )]. (3 4) v 1 (, t; x E ) 45

72 A B SC/EPSP (or SC/IPSP) Experiment ) mv ( κ.2.1 Experiment IPSP (or EPSP) (mv) E location (µm) (A) (3 6) (3 2) SC EPSP (SC/EPSP) IPSP ( ) SC IPSP (SC/IPSP) EPSP ( ). EPSP IPSP (.2mV-3mV), SC/EPSP IPSP., IPSP EPSP (1mV-8mV), SC/IPSP EPSP. x E = 3µm, x I = 24µm.. (B) (3 6) κ : 5µm, 2µm 35µm, κ.. [59], x-y, Fig 3 4 Numerical experiments on dendritic integration rule for a pair of E-I inputs. (A) Simulation results of the two-compartment neuron model (3 6) in confirmation of the rule (3 2): Ratio of SC to EPSP (SC/EPSP) plotted against IPSP (red circle) and SC/IPSP plotted against EPSP (blue square). Fixing EPSP amplitude while varying IPSP amplitude from.2mv to 3mV, SC/EPSP increases linearly with IPSP. Similarly, fixing IPSP amplitude while varying EPSP amplitude from 1mV to 8mV, SC/IPSP increases linearly with EPSP. Lines indicate linear fit. Stimuli are given at x E = 3µm, x I = 24µm. Inset: experimental results (the inset is modified from Ref. [59]). (B) Spatial asymmetry of shunting coefficient κ in the model (3 6): κ as a function of distance between E location and the soma for three fixed I locations at 5µm, 2µm and 35µm, respectively (marked by colored lines). Inset: experimental results for the same set of the I locations (the inset is modified from Ref. [59]). The insets have the same axis labels as in the main figures. Parameters in our simulation can be found in Table

73 l 1, (3 17) w =, w n (n 1 2 )π n 1. k = g L, k n αw 2 n/l 2 n 1, α = d/4r a. (3 2) (3 26), v 1 (x I, t; x E ) v 1 β 1+γl e g Lt/c g E + 2βclg E αγ 1 w 2 n=1 n ( cos [w n 1 x I l )] ( cos [w n 1 x E l )]. (3 41) β = γε E 4ra c 2 d., 2 x E v 1 (x I, t; x E ) 2 v 1 x 2 E βcg E αγl n=1 = βcg E αγl = βcg E αγl [ ( xi + x E cos 2l [ ( ) xi + x E cos nπ 2l n=1 ( xi x E cos 2l [ ( ) xi + x E δ c 2l ) nπ + cos ) ( xi x E (2n 1)π + cos 2l ( xi + x E cos l δ c ( xi + x E l ( xi x E l ) ) nπ )] nπ δ c ( xi x E 2l ) )] (2n 1)π ( )] xi x E + δ c, l δ c 2 [78] (Dirac Comb). x E,I [, l], x E = x I δ., xe v 1 (x I, t; x E ) x E. (3 41), xe v 1 (x I, t; x E ) = (3 42) x E = l. x E [, x I ], xe v 1 (x I, t; x E ) x E [x I, l], xe v 1 (x I, t; x E ) =., 47

74 v 1 (x I, t; x E ), x E, x E = x I, x E > x I., v 1 (, t; x E ) x E [, l]. (3 4), l 1 κ. κ l. 3 4.B,., κ. x I, G(, x I, t) g I (t). x E [, x I ], x I v 1 (, t; x E ) v 1 (x I, t; x E ). x E x I, x E, v 1 (, t; x E )., x E x I, v 1 (x I, t; x E )., x E [, x I ], (3 4), κ x E. x E > x I, x E x I, v 1 (, t; x E ) v 1 (x I, t; x E ). (3 4), κ., (3 2) EPSP t p, [59].,...,., ( 2.2.3).,, ,, (3 2)., κ : 3 5.A, ( 3 5.A ), 48

75 A B.16 Branching Point C.16 I soma I I E I S I E, E I E κ (mv 1 ) E distance (µm) κ (mv 1 ) I 3 5. (A). (B) κ. ( ), ( ). ( ). (C) ( ), κ. κ. Fig 3 5 Spatial dependence of κ. (A) A schematic branched dendrite. (B) Spatial profiles of κ as a function of the E input location along the trunk of a realistic neuron (marked orange in the inset) for a fixed I input on a branch (red square). The dashed vertical line indicates the location of the branching point (green dot) along the trunk. (C) κ values (color-coded) for an I input (red dot) fixed at the apical trunk, with an E input scanned throughout the active dendrite. ( 3 5.A ).,,., κ x E ;, κ., κ. x E, x E x I,. κ (3 4), κ x E x E, (3 4), x I,κ v 1 (, t; x E ) v 1 (x I, t; x E ). x E ( 3 5.A ), I E, v 1 (x, t; x E ). E ( 3 5.A ), I E. E, I E,, I S, x I, I I. x E E 49

76 E I E, x I I S I I.,, v 1 (, t; x E ) x I v 1 (x I, t; x E ). (3 4), E E, κ ,. [59]., NEURON, Crank-Nicolson. CA1, Duke-Southampton Archive [79], 2.. : g Na g Kd A g p K A g d K A H g h AMPA,NMDA,GABA A,GABA B. [8 82]. AMPA,NMDA, GABA A dr dt = α[c](1 r) βr r, 1.α β,[c]. I syn = g syn (v ε syn ), (3 43) 5

77 v, ε syn, g syn. AMPA GABA A, ḡ ; NMDA, g syn = g syn = ḡr, (3 44) ḡr, (3 45) [Mg 2+ ]e.6v [Mg 2+ ]. GABA B,, g syn = ḡgn G n + K D, (3 46) G G-, n G-, K D. G dr dt = K 1[C](1 r) K 2 r, (3 47) dg dt = K 3r K 4 G, (3 48) K 1, K 2,K 3, K 4 G-. [66, 67, 8 82]. [59]. [83]. [34]. A, 35µm [35, 36]. H, [37].AMPA, [84 87]., g Na = 3mS/cm 2, g Na = 6mS/cm 2, g Kd = 5mS/cm 2, A x 1µm, ( g p K A (x) = ḡ KA 1 + x ), (3 49) 7 51

78 1µm < x 35µm, ( gk d A (x) = ḡ KA 1 + x ), (3 5) 7 x > 35µm g d K A (x) = 6.5 ḡ KA, (3 51) ḡ KA = 5mS/cm 2. H g h (x) = g s + g e g s 1 + exp[(l 2x)/(2δl)], (3 52) g s = 2µS/cm 2 (s ), g e = 1g s (e ), l = 6µm (l ), δl = 5µm. ( ) NMDA AMPA GABA B GABA A.6. R(x) = x. (3 53) l/2 : ( ) r m = r s + r e r s 1 + exp[(l 2x)/(2δl)], (3 54) r a = 8Ωcm, c = 1µF /cm 2, T = 34 o C, v r = 7mV. : E Na = +55mV, E K = 9mV, E h = 3mV, E AMP A = E NMDA = mv, E GABAA = 8mV, E GABAB = 9mV. 3 5.B, ( ),, κ, ( 3 5.B )., 3 5.C, ( 3 5.C ),κ. 3 5.B 3 5.C. 52

79 3.3.3 κ, [59] A,,., κ..,, κ. 3 6.B,,., κ κ..,κ, κ. 3 6.C,,,., κ..,, κ. 3 6.D,,,., κ κ..,, κ. 53

80 A κ (mv 1 ) EI.3.25 I E 2 E1 B κ (mv 1 EI ).3.25 I E E E1 E2.2 E1 E2 C κ (mv 1 ) EI.3.2 E 1 I E 2 D κ (mv 1 ) EI.3 E2 I E E1 E2 E1 E [59].,,. (I) (E1,E2).. (A) I,E1 E2 I., κ.(b) I, E1 E2 I., E1 κ E2 κ. (C) I,E1 E2, I., κ. (D) I, E1 E2, I., E2 κ E1 κ. [59]. Fig 3 6 Shunting coefficient κ in branched dendrites measured in experiments. Data are from Ref. [59]. The data in grey was collected from 7 neurons and lines connect data from the same cell. The data in black is the average of the data in grey. In all figure panels, the locations of the inhibitory input (I) and excitatory inputs (E1 and E2) are marked by blue dot and red dots, respectively. The I path is marked by green. (A) The inhibitory input I at an oblique branch: κ is nearly constant for two distal E1 and E2 on the same branch. (B) As in (A) except that E1 and E2 are more proximal than I. κ is significantly different at E1 and E2 sites. (C)The inhibitory input I at the trunk: κ is nearly constant between E1 at the trunk and E2 at the oblique branch. (D) The inhibitory input I at an oblique branch: κ is significantly different between E1 and E2, where E1 is on the same branch as I and E2 is on a different branch. Figures are modified from Ref. [59]. 54

81 [59] (3 2)., (3 2) -, EPSP.,,. (3 2), (i), -, -, -, - ; (ii), EPSP ; (iii),.,. -, -, -,. : ,, ,, l, d. x. x = x E t = t E, x = x I t = t I, v c v t = g Lv q=e,i f q g q (t t q )δ(x x q )(v ε q ) + d 4r a 2 v x 2, (4 1) 55

82 v, c, r a, g L. f E f I. g E g I, ε E ε I ,,, v x =, x=l (4 2) v(, t) c = g L v(, t) + πd2 v t 4Sr a x, x= (4 3) S., v(x, ) =. (4 4), 3.2.2, t E t I., v(x, t) f E f I v(x, t) = k=m+n=k f m E f n I v mn (x, t). (4 5) (4 5) (6 1)-(6 1),, v mn (x, t). v mn (x, t) (m + n 2). O(1), O(f E ), v (x, t) =. (4 6) v 1 (x, t) = G(x, x E, t) [ε E g E (t t E )], (4 7). G(x, y, t), O(f 2 E ), v 2 (x, t) = G(x, x E, t) [ g E (t t E )v 1 (x E, t)], (4 8) O(f I ), v 1 (x, t) = G(x, x I, t) [ε I g I (t t I )], (4 9) 56

83 O(f 2 I ), O(f E f I ), v 2 (x, t) = G(x, x I, t) [ g I (t t I )v 1 (x I, t)]. (4 1) v 11 (x, t) = G(x, x E, t) [ g E (t t E )v 1 (x E, t)] + G(x, x I, t) [ g I (t t I )v 1 (x I, t)]. (4 11) ε E =7mV ε I = 1mV, (4 11) v 11 v 11 (x, t) G(x, x I, t) [ g I (t t I )v 1 (x I, t)]. (4 12) 3.2.4,,,, EPSP, V E (t) f E v 1 (, t) + fev 2 2 (, t). (4 13), IPSP, V I (t) f I v 1 (, t) + fi 2 v 2 (, t). (4 14), SSP, V S (t) V E (t) + V I (t) + f E f I v 11 (, t). (4 15) V SC (t) SSP EPSP+IPSP, V SC (t) f E f I v 11 (, t). (4 16) ε I mv, V I, V SC., V I,V SC, [59]., O(f E f I ). κ EI κ EI (t; t E, t I, x E, x I ) = V SC V E V I G(, x I, t) [g I (t t I )G(x I, x E, t) g E (t t E )] ε I G(, x E, t) g E (t t E ) G(, x I, t) g I (t t I ), (4 17a) (4 17b) 57

84 κ EI EPSP IPSP, f E f I (4 17b). (4 17a), V S (t) = V E (t) + V I (t) + κ EI (t)v E (t)v I (t). (4 18) κ EI EPSP IPSP., κ EI x E x I., κ EI t τ = t E t I, 4 1. (4 18) EPSP IPSP, (4 18) (4 18),, A, (t E = t I ), 4 2.A, x E = 283µm x I = 151µm, SSP EPSP IPSP., (4 18) EPSP t p., f E EPSP.5mV 6mV, f I IPSP -.5mV -3mV. f E f I, EPSP, IPSP SSP. f E f I, 9 { EPSP, IPSP, SSP }. t p SC V SC (t p ) EPSP IPSP, V E (t p )V I (t p ). 4 3.A, κ EI (t p ) EPSP IPSP. [59]., (4 18) t, t p. κ EI (t) t p τ < t < t p + τ, τ = 1ms. 58

85 κ EI (t,τ) E t I τ t E t 1µm I EPSP IPSP 4 1 κ EI. -, κ EI t τ... ( ) IPSP EPSP,. ( ) κ EI EPSP,. Fig 4 1 Shunting coefficient κ EI as a function of time t and input arrival difference τ for a fixed pair of excitatory and inhibitory input locations. Left, a morphological plot of a pyramidal neuron. The excitatory and inhibitory input locations are indicated by arrows. Right, (lower) an IPSP arrives at the soma earlier than an EPSP. The arrival times are indicated by vertical dashed lines. (upper) The shunting coefficient κ EI remains at zero until the time when the EPSP starts. 59

86 A EPSP Linear Sum B EPSP Linear Sum SSP SSP t p IPSP SC 5ms 2mV IPSP SC 5ms 2mV (A), EPSP, IPSP, SSP SC EPSP+IPSP. t p EPSP. (B) (A), IPSP EPSP 2ms x E = 283µm, x I = 151µm. Fig 4 2 The membrane potential profiles for a pair of concurrent and non-current E-I inputs. (A) An example of EPSP, IPSP, SSP, SC, and the corresponding linear sum when the EPSP and the IPSP are elicited concurrently. Here t p denotes the time when EPSP reaches its peak value. (B) The same as (A) except that the IPSP is elicited 2ms before the EPSP. The results are obtained in the realistic neuron model simulation which is described in detail in Section The excitatory input is given at the location x E = 283µm and the inhibitory input is given at the location x I = 151µm. 2ms, EPSP, EPSP,. t, κ EI (t) 9 { EPSP, IPSP, SSP }. 4 3.B, t, κ EI., R 2 1.,V SC (t) V E (t)v I (t). t,κ EI EPSP IPSP., t p,, EPSP IPSP mv., SC, (4 18) κ EI = mv 1. (t E t I ), 4 2.B, 2ms, (4 18), 4 4.A-B.,. 6

87 A V SC (mv) x V E V I (mv 2 ) B R 2 κ EI x Time (ms) (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E V I R 2. ( ) κ EI (t) ( mv 1 ),. 95%. (A). Fig 4 3 Numerical results for the dendritic integration of a pair of concurrent excitatory and inhibitory inputs. (A) Dendritic integration at the EPSP peak time. (B) Dendritic integration in the time interval t p τ < t < t p + τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E V I at different times. (lower) The shunting coefficient κ EI (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A) , (4 18). CA1., x E 1µm, x I 5µm., EPSP 1mV 8mV, IPSP -.5mV -3mV., 1ms, SC V SC EPSP IPSP V E V I, V E V I 1,.,. 61

88 A x1-1 B 6 1 R 2.5 V SC (mv) x1 κ EI V E V I (mv 2 ) Time (ms) IPSP EPSP 2ms. (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E V I R 2. ( ) κ EI (t) ( mv 1 ),. 95%. (A). Fig 4 4 Numerical results for the dendritic integration of a pair of nonconcurrent excitatory and inhibitory inputs. IPSP is elicited 2ms before the EPSP. (A) Dendritic integration at the EPSP peak time. (B) Dendritic integration in the time interval t p τ < t < t p + τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E V I at different times. (lower) The shunting coefficient κ EI (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). (t E = t I ), t p SC V SC (t p ) EPSP IPSP, V E (t p )V I (t p ), 4 5.A. κ EI EPSP IPSP, (4 18). t p τ < t < t p + τ, τ = 1ms, V SC (t) V E (t)v I (t), 4 5.B. (4 18). (t E t I ), 2ms, (4 18) EPSP, 4 6.A-B., R , R (4 18). 62

89 A B 3 1 R 2.5 V SC (mv) 2 1 κ EI x V E V I (m V 2 ) Time (ms) (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E V I R 2. ( ) κ EI (t) ( mv 1 ),. 95%. (A). Fig 4 5 Experimental results for the dendritic integration of a pair of concurrent excitatory and inhibitory inputs. (A) Dendritic integration at the EPSP peak time. (B) Dendritic integration in the time interval t p τ < t < t p + τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E V I at different times. (lower) The shunting coefficient κ EI (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A) (4 18).., [26],,., x = x E1 t = t E1 f E1, x = x E2 t = t E2 f E2 63

90 A B 1 V SC (mv) 4 2 R κ EI x V E V I (mv 2 ) Time (ms) IPSP EPSP 2ms. (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E V I R 2. ( ) κ EI (t) ( mv 1 ),. 95%. (A). Fig 4 6 Experimental results for the dendritic integration of a pair of nonconcurrent excitatory and inhibitory inputs. IPSP is elicited 2ms before the EPSP. (A) Dendritic integration at the EPSP peak time. (B) Dendritic integration in the time interval t p τ < t < t p + τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E V I at different times. (lower) The shunting coefficient κ EI (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A)., c v t = g Lv q=e1,e2 f q g E (t t q )δ(x x q )(v ε E ) + d 2 v (4 19) 4r a x 2, 3.2.2,,, v x =, (4 2) x=l v(, t) c t = g L v(, t) + πd2 4Sr a 64 v x, (4 21) x=

91 , v(x, ) =. (4 22), (4 19) f E1 f E2, ( ) EPSP SSP, V S (t) = V E1 (t) + V E2 (t) + κ EE (t)v E1 (t)v E2 (t), (4 23) V E1 V E2 f E1 f E2 EPSP. V S SSP , κ EE (t), EPSP. κ EE - κ EI, (4 23),. (t E1 = t E2 ), x E1 f E1, EPSP 1. x E2 f E2, EPSP 2. x E1 x E2 f E1 f E2, SSP. f E1 f E2 EPSP 1 EPSP 2.5mV 2mV, 1 { EPSP 1, EPSP 2,SSP }., EPSP 1 t p, V SC (t p ) = V S (t p ) V E1 (t p ) V E2 (t p )., V SC V E1 (t p )V E2 (t p ), 4 7.A. κ EE EPSP 1 EPSP 2, (4 23) t p., 4 7.B, (4 23) t p τ < t < t p + τ, τ = 1ms. 65

92 A x B 1 R 2.5 V SC (mv) 1.5 x κ EE V E1 V E2 (m V 2 ) Time (ms) (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E1 V E2 R 2. ( ) κ EE (t) ( mv 1 ),. 95%. (A). Fig 4 7 Numerical results for the dendritic integration of a pair of concurrent excitatory inputs. (A) Dendritic integration at one of the EPSPs peak time. (B) Dendritic integration in the time interval t p τ < t < t p +τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E1 V E2 at different times. (lower) The shunting coefficient κ EE (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). (t E1 t E2 ),, (4 23), 4 8., ( V E1 V E2 > 5mV), (4 23).., κ EE ( 1 2 ) κ EI ( 1 1 ). κ EE = mv 1 66

93 A x1-2 B 1 V SC (mv) κ R 2 EE x V E1 V E2 (m V 2 ) Time (ms) EPSP EPSP 2ms. (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E1 V E2 R 2. ( ) κ EE (t) ( mv 1 ),. 95%. (A). Fig 4 8 Numerical results for the dendritic integration of a pair of nonconcurrent excitatory inputs. One of the EPSPs is elicited 2ms earlier than the other. (A) Dendritic integration at one of the EPSPs peak time. (B) Dendritic integration in the time interval t p τ < t < t p + τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E1 V E2 at different times. (lower) The shunting coefficient κ EE (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A)., SSP EPSP. V S (t) = V E1 (t) + V E2 (t). (4 24) [88]..,,

94 A B SSP (mv) 4 SSP (mv) Linear Sum (mv) Linear Sum (mv) , (A) (B). (B) EPSP EPSP 2ms. x E1 5µm x E2 1µm. Fig 4 9 Dendritic integration of a pair of excitatory inputs in experiments. Our experimental result shows the nearly linear summation for a pair of concurrent excitatory inputs (A) and nonconcurrent excitatory inputs with arrival time difference 2ms (B). Two excitatory inputs are given at the location x E1 5µm and at x E2 1µm , x = x I1 t = t I1 f I1, x = x I2 t = t I2 f I2, c v t = g Lv q=i1,i2 f q g I (t t q )δ(x x q )(v ε I ) + d 2 v (4 25) 4r a x 2,,, v x =, (4 26) x=l 68

95 v(, t) c t = g L v(, t) + πd2 4Sr a, v x, (4 27) x= v(x, ) =. (4 28), (4 25) f I1 f I2, ( ) IPSP SSP, V S (t) = V I1 (t) + V I2 (t) + κ II (t)v I1 (t)v I2 (t), (4 29) V I1 V I2 f I1 f I2 IPSP. V S SSP , κ II (t), IPSP (4 29),. (t I1 = t I2 ),, x I1 = 94µm f I1, IPSP 1. x I2 = 151µm f I2, IPSP 2. x I1 x I2 f I1 f I2, SSP. f I1 f I2 IPSP 1 IPSP 2 -.5mV -3mV, 1 { IPSP 1,IPSP 2,SSP }., IPSP 1 t p, V SC (t p ) = V S (t p ) V I1 (t p ) V I2 (t p )., V SC V I1 (t p )V I2 (t p ), 4 1.A. κ II IPSP 1 IPSP 2, 69

96 A B 1 R V SC (mv) κ II V I1 V I2 (mv 2 ) Time (ms) (A) IPSP. (B) t p 5ms < t < t p + 15ms. ( ) V SC V I1 V I2 R 2. ( ) κ II (t) ( mv 1 ),. 95%. (A). Fig 4 1 Numerical results for the dendritic integration of a pair of concurrent inhibitory inputs. (A) Dendritic integration at one of the IPSPs peak time. (B) Dendritic integration in the time interval t p 5ms < t < t p + 15ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V I1 V I2 at different times. (lower) The shunting coefficient κ II (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). t p., 4 1.B, (4 29) t p 5ms < t < t p + 15ms., (4 29), , x I1 5µm, x I2 1µm., IPSP 1 IPSP 2 -.5mV -3.5mV. (t I1 = t I2 ), t p SC V SC (t p ) 7

97 A B 1.5 R V SC (mv) 1.5 κ II V I1 V I2 (mv 2 ) Time (ms) IPSP IPSP 2ms. (A) IPSP. (B) t p 5ms < t < t p +15ms. ( ) V SC V I1 V I2 R 2. ( ) κ II (t) ( mv 1 ),. 95%. (A). Fig 4 11 Numerical results for the dendritic integration of a pair of nonconcurrent inhibitory inputs. One of the IPSPs is elicited 2ms earlier than the other. (A) Dendritic integration at one of the IPSPs peak time. (B) Dendritic integration in the time interval t p 5ms < t < t p + 15ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V I1 V I2 at different times. (lower) The shunting coefficient κ II (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). IPSP 1 IPSP 2, V I1 (t p )V I2 (t p ), 4 12.A. κ II IPSP 1 IPSP 2, (4 29). t p 5ms < t < t p + 15ms, V SC (t) V I1 (t)v I2 (t), 4 12.B. (4 29). (t I1 t I2 ), 2ms, (4 29) IPSP,

98 A B R 2.5 V SC (mv) κ II V I1V I2 (mv 2 ) Time (ms) (A) IPSP. (B) t p 5ms < t < t p + 15ms. ( ) V SC V I1 V I2 R 2. ( ) κ II (t) ( mv 1 ),. 95%. (A). Fig 4 12 Experimental results for the dendritic integration of a pair of concurrent inhibitory inputs. (A) Dendritic integration at one of the IPSPs peak time. (B) Dendritic integration in the time interval t p 5ms < t < t p + 15ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V I1 V I2 at different times. (lower) The shunting coefficient κ II (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A) ,., [28].., c v t = g Lv q=e,i G q (v ε q ) + d 4r a 2 v x 2, (4 3) 72

99 A 2. B R 2.5 V SC (mv) κ II V I1 V I2 (mv 2 ) Time (ms) IPSP IPSP 2ms. (A) IPSP. (B) t p 5ms < t < t p +15ms. ( ) V SC V I1 V I2 R 2. ( ) κ II (t) ( mv 1 ),. 95%. (A). Fig 4 13 Experimental results for the dendritic integration of a pair of nonconcurrent inhibitory inputs. One of the IPSPs is elicited 2ms earlier than the other. (A) Dendritic integration at one of the IPSPs peak time. (B) Dendritic integration in the time interval t p 5ms < t < t p + 15ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V I1 V I2 at different times. (lower) The shunting coefficient κ II (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). G q = M q i=1 j=1 f ij q g q (t t ij q )δ(x x i q), (4 31) q {E, I}. q, fq ij ith jth, t ij q ith jth, x i q ith., SSP 73

Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

Introduction to Hamilton-Jacobi Equations  and Periodic Homogenization Introduction to Hamilton-Jacobi Equations and Periodic Yu-Yu Liu NCKU Math August 22, 2012 Yu-Yu Liu (NCKU Math) H-J equation and August 22, 2012 1 / 15 H-J equations H-J equations A Hamilton-Jacobi equation

More information

不确定性环境下公司并购的估价:一种实物期权.doc

不确定性环境下公司并购的估价:一种实物期权.doc Abstract In view of the inadequacy of investment valuation under uncertainty by the orthodox discounted cash flow (DCF), many scholars have begun to study the investment under uncertainty. Option pricing

More information

10384 19020101152519 UDC Rayleigh Quasi-Rayleigh Method for computing eigenvalues of symmetric tensors 2 0 1 3 2 0 1 3 2 0 1 3 2013 , 1. 2. [4], [27].,. [6] E- ; [7], Z-. [15]. Ramara G. kolda [1, 2],

More information

12-2 プレート境界深部すべりに係る諸現象の全体像

12-2 プレート境界深部すべりに係る諸現象の全体像 - 452 - - 453 - - 454 - - 455 - - 456 - Table 1 Comparison of phenomena associated with slip event at deep portion along the plate interface. - 457 - ECMJMA LFE 3 8 29 31 3 2-16Hz ECM Fig.1 Comparison

More information

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库 10384 15620071151397 UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 2010 4 Duffee 1999 AAA Vasicek RMSE RMSE Abstract In order to investigate whether adding macro factors

More information

南華大學數位論文

南華大學數位論文 南 華 大 學 ( 文 學 所 ) 碩 士 論 文 論 文 題 目 ( 陳 千 武 小 說 活 著 回 來 及 其 相 關 事 例 研 究 ) 論 文 題 目 (Chen Chien Wu Return Alive And Some Research About It) 研 究 生 : 朱 妍 淩 指 導 教 授 : 林 葉 連 中 華 民 國 一 0 一 年 6 月 8 日 陳 千 武 小 說

More information

Untitled-3

Untitled-3 SEC.. Separable Equations In each of problems 1 through 8 solve the given differential equation : ü 1. y ' x y x y, y 0 fl y - x 0 fl y - x 0 fl y - x3 3 c, y 0 ü. y ' x ^ y 1 + x 3 x y 1 + x 3, y 0 fl

More information

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe * - - 100084 Q235B ML15 Ca OH 2 DOI 10. 13204 /j. gyjz201508023 STUDY OF GALVANIC CORROSION SENSITIVITY BETWEEN ANY COUPLE OF STUD WELDMENT OR BEAM Lu Xinying Li Yang Li Yuanjin Department of Civil Engineering

More information

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/ Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University hjzhang001@gmail.com 508 YiFu Lou talk 06/04/2010 - Page 1 Outline 508 YiFu Lou talk 06/04/2010

More information

ENGG1410-F Tutorial 6

ENGG1410-F Tutorial 6 Jianwen Zhao Department of Computer Science and Engineering The Chinese University of Hong Kong 1/16 Problem 1. Matrix Diagonalization Diagonalize the following matrix: A = [ ] 1 2 4 3 2/16 Solution The

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

Shanghai International Studies University THE STUDY AND PRACTICE OF SITUATIONAL LANGUAGE TEACHING OF ADVERB AT BEGINNING AND INTERMEDIATE LEVEL A Thes

Shanghai International Studies University THE STUDY AND PRACTICE OF SITUATIONAL LANGUAGE TEACHING OF ADVERB AT BEGINNING AND INTERMEDIATE LEVEL A Thes 上 海 外 国 语 大 学 硕 士 学 位 论 文 对 外 汉 语 初 中 级 副 词 情 境 教 学 研 究 与 实 践 院 系 : 国 际 文 化 交 流 学 院 学 科 专 业 : 汉 语 国 际 教 育 姓 名 : 顾 妍 指 导 教 师 : 缪 俊 2016 年 5 月 Shanghai International Studies University THE STUDY AND PRACTICE

More information

, GC/MS ph GC/MS I

, GC/MS ph GC/MS I S00017052 O O , GC/MS ph GC/MS I Abstract Drug abuse is a serious issue throughout the world. Amphetamine-type stimulants (ATS) are substances frequently used by drug abusers. There are significant needs

More information

國家圖書館典藏電子全文

國家圖書館典藏電子全文 i ii Abstract The most important task in human resource management is to encourage and help employees to develop their potential so that they can fully contribute to the organization s goals. The main

More information

(baking powder) 1 ( ) ( ) 1 10g g (two level design, D-optimal) 32 1/2 fraction Two Level Fractional Factorial Design D-Optimal D

(baking powder) 1 ( ) ( ) 1 10g g (two level design, D-optimal) 32 1/2 fraction Two Level Fractional Factorial Design D-Optimal D ( ) 4 1 1 1 145 1 110 1 (baking powder) 1 ( ) ( ) 1 10g 1 1 2.5g 1 1 1 1 60 10 (two level design, D-optimal) 32 1/2 fraction Two Level Fractional Factorial Design D-Optimal Design 1. 60 120 2. 3. 40 10

More information

2008 Nankai Business Review 61

2008 Nankai Business Review 61 150 5 * 71272026 60 2008 Nankai Business Review 61 / 62 Nankai Business Review 63 64 Nankai Business Review 65 66 Nankai Business Review 67 68 Nankai Business Review 69 Mechanism of Luxury Brands Formation

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

Microsoft PowerPoint - CH 04 Techniques of Circuit Analysis

Microsoft PowerPoint - CH 04 Techniques of Circuit Analysis Chap. 4 Techniques of Circuit Analysis Contents 4.1 Terminology 4.2 Introduction to the Node-Voltage Method 4.3 The Node-Voltage Method and Dependent Sources 4.4 The Node-Voltage Method: Some Special Cases

More information

投影片 1

投影片 1 Coherence ( ) Temporal Coherence Michelson Interferometer Spatial Coherence Young s Interference Spatiotemporal Coherence 參 料 [1] Eugene Hecht, Optics, Addison Wesley Co., New York 2001 [2] W. Lauterborn,

More information

曹 文 轩 小 说 中 的 空 间 叙 事 研 究 A STUDY OF SPATIAL NARRATIVE IN CAO WEN XUAN S NOVELS By 陈 诗 蓉 TAN SIH YONG 本 论 文 乃 获 取 文 学 硕 士 学 位 ( 中 文 系 ) 的 部 分 条 件 A di

曹 文 轩 小 说 中 的 空 间 叙 事 研 究 A STUDY OF SPATIAL NARRATIVE IN CAO WEN XUAN S NOVELS By 陈 诗 蓉 TAN SIH YONG 本 论 文 乃 获 取 文 学 硕 士 学 位 ( 中 文 系 ) 的 部 分 条 件 A di 曹 文 轩 小 说 中 的 空 间 叙 事 研 究 A STUDY OF SPATIAL NARRATIVE IN CAO WEN XUAN S NOVELS 陈 诗 蓉 TAN SIH YONG MASTER OF ARTS (CHINESE STUDIES) 拉 曼 大 学 中 华 研 究 院 INSTITUTE OF CHINESE STUDIES UNIVERSITI TUNKU ABDUL

More information

10384 27720071152270 UDC SHIBOR - Research on Dynamics of Short-term Shibor via Parametric and Nonparametric Models 2 0 1 0 0 5 2 0 1 0 0 5 2 0 1 0 0 5 2010 , 1. 2. Shibor 2006 10 8 2007 1 4 Shibor

More information

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m + 2012 12 Chinese Journal of Applied Probability and Statistics Vol.28 No.6 Dec. 2012 ( 224002) Euclidean Lebesgue... :. : O212.2 O159. 1.. Zadeh [1 2]. Tanaa (1982) ; Diamond (1988) (FLS) FLS LS ; Savic

More information

Microsoft Word - 24217010311110028谢雯雯.doc

Microsoft Word - 24217010311110028谢雯雯.doc HUAZHONG AGRICULTURAL UNIVERSITY 硕 士 学 位 论 文 MASTER S DEGREE DISSERTATION 80 后 女 硕 士 生 择 偶 现 状 以 武 汉 市 七 所 高 校 为 例 POST-80S FEMALE POSTGRADUATE MATE SELECTION STATUS STUDY TAKE WUHAN SEVEN UNIVERSITIES

More information

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2 35 2 2012 2 GEOMATICS & SPATIAL INFORMATION TECHNOLOGY Vol. 35 No. 2 Feb. 2012 1 2 3 4 1. 450008 2. 450005 3. 450008 4. 572000 20 J 101 20 ARMA TU196 B 1672-5867 2012 02-0213 - 04 Application of Time Series

More information

The Development of Color Constancy and Calibration System

The Development of Color Constancy and Calibration System The Development of Color Constancy and Calibration System The Development of Color Constancy and Calibration System LabVIEW CCD BMP ii Abstract The modern technologies develop more and more faster, and

More information

國 立 新 竹 教 育 大 學 音 樂 學 系 音 樂 教 學 碩 士 班 學 位 論 文 新 瓦 屋 客 家 花 鼓 之 研 究 A Research on Hsin-Wa-Wu Hakka Flower-Drum 研 究 生 : 陳 怡 妃 指 導 教 授 : 明 立 國 中 華 民 國 九 十 八 年 三 月 本 論 文 獲 行 政 院 文 化 建 設 委 員 會 文 化 資 產 總 管 理

More information

ABP

ABP ABP 2016 319 1 ABP A. D. Aleksandrov,I. Y. Bakelman,C. Pucci 1 2 ABP 3 ABP 4 5 2 Ω R n : bounded C 0 = C 0 (n) > 0 such that u f in Ω (classical subsolution) max Ω u max u + C 0diam(Ω) 2 f + L Ω (Ω) 3

More information

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen 31 2 Vol. 31, No. 2 2013 5 PROGRESS IN ASTRONOMY May., 2013 doi: 10.3969/j.issn.1000-8349.2013.02.08 VLBI 1,2 1 ( 1. 200030 2. 100049 ) VLBI VLBI VLBI VLBI VLBI VLBI P228.6 A 1 (VLBI) 20 60 (ITRF) (EOP)

More information

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315. 31 5 2011 10 JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct. 2011 1000-1301 2011 05-0075 - 09 510405 1 /35 TU3521 P315. 8 A Earthquake simulation shaking table test and analysis

More information

50% SWEET 甜 蜜 五 分 仔 - 橋 頭 糖 廠 紀 念 商 品 開 發 設 計 之 研 究 50% SWEET - The Study on the Development and Design of Souvenirs of Qiao Tou Sugar Plant 研 究 生 : 陳

50% SWEET 甜 蜜 五 分 仔 - 橋 頭 糖 廠 紀 念 商 品 開 發 設 計 之 研 究 50% SWEET - The Study on the Development and Design of Souvenirs of Qiao Tou Sugar Plant 研 究 生 : 陳 樹 德 科 技 大 學 應 用 設 計 研 究 所 碩 士 論 文 50% SWEET 甜 蜜 五 分 仔 - 橋 頭 糖 廠 紀 念 商 品 開 發 設 計 之 研 究 50% SWEET - The Study on the Development and Design of Souvenirs of Qiao Tou Sugar Plant 研 究 生 : 陳 宥 薰 指 導 教 授 : 郭

More information

OncidiumGower Ramsey ) 2 1(CK1) 2(CK2) 1(T1) 2(T2) ( ) CK1 43 (A 44.2 ) CK2 66 (A 48.5 ) T1 40 (

OncidiumGower Ramsey ) 2 1(CK1) 2(CK2) 1(T1) 2(T2) ( ) CK1 43 (A 44.2 ) CK2 66 (A 48.5 ) T1 40 ( 35 1 2006 48 35-46 OncidiumGower Ramsey ) 2 1(CK1) 2(CK2) 1(T1) 2(T2) (93 5 28 95 1 9 ) 94 1-2 5-6 8-10 94 7 CK1 43 (A 44.2 ) CK2 66 (A 48.5 ) T1 40 (A 47.5 ) T2 73 (A 46.6 ) 3 CK2 T1 T2 CK1 2006 8 16

More information

课题调查对象:

课题调查对象: 1 大 陆 地 方 政 府 大 文 化 管 理 职 能 与 机 构 整 合 模 式 比 较 研 究 武 汉 大 学 陈 世 香 [ 内 容 摘 要 ] 迄 今 为 止, 大 陆 地 方 政 府 文 化 管 理 体 制 改 革 已 经 由 试 点 改 革 进 入 到 全 面 推 行 阶 段 本 文 主 要 通 过 结 合 典 型 调 查 法 与 比 较 研 究 方 法, 对 已 经 进 行 了 政 府

More information

Public Projects A Thesis Submitted to Department of Construction Engineering National Kaohsiung First University of Science and Technology In Partial

Public Projects A Thesis Submitted to Department of Construction Engineering National Kaohsiung First University of Science and Technology In Partial Public Projects A Thesis Submitted to Department of Construction Engineering National Kaohsiung First University of Science and Technology In Partial Fulfillment of the Requirements For the Degree of Master

More information

摘 要 張 捷 明 是 台 灣 當 代 重 要 的 客 語 兒 童 文 學 作 家, 他 的 作 品 記 錄 著 客 家 人 的 思 想 文 化 與 觀 念, 也 曾 榮 獲 多 項 文 學 大 獎 的 肯 定, 對 台 灣 這 塊 土 地 上 的 客 家 人 有 著 深 厚 的 情 感 張 氏 於

摘 要 張 捷 明 是 台 灣 當 代 重 要 的 客 語 兒 童 文 學 作 家, 他 的 作 品 記 錄 著 客 家 人 的 思 想 文 化 與 觀 念, 也 曾 榮 獲 多 項 文 學 大 獎 的 肯 定, 對 台 灣 這 塊 土 地 上 的 客 家 人 有 著 深 厚 的 情 感 張 氏 於 玄 奘 大 學 中 國 語 文 學 系 碩 士 論 文 客 家 安 徒 生 張 捷 明 童 話 研 究 指 導 教 授 : 羅 宗 濤 博 士 研 究 生 : 黃 春 芳 撰 中 華 民 國 一 0 二 年 六 月 摘 要 張 捷 明 是 台 灣 當 代 重 要 的 客 語 兒 童 文 學 作 家, 他 的 作 品 記 錄 著 客 家 人 的 思 想 文 化 與 觀 念, 也 曾 榮 獲 多 項 文

More information

國立中山大學學位論文典藏.PDF

國立中山大學學位論文典藏.PDF I II III IV V VI In recent years, the Taiwan s TV talk shows about the political topic have a bias in favour of party. In Taiwan, there are two property of party, one is called Blue property of party,

More information

90 2011 7 1 90 90 90 * 30 1984 1989 4 * 2011 6 1993 1997 1992 1998 2003 5 2004 2007 2008 2010 2008 6 2011 6 * 33% 21% 19% 18% 3% 8 5% * 7 - - - 8 2011 6 * 1921 2011 90 90 90 90 90 1921 1949 1949 16 12

More information

mm 400 mm 15 mm EOF mm/10a Fig. 1 Distributions

mm 400 mm 15 mm EOF mm/10a Fig. 1 Distributions 7 2 2011 3 ADVANCES IN CLIMATE CHANGE RESEARCH Vol. 7 No. 2 March 2011 1673-1719 (2011) 02-0097-07 1961 2007 77 5 5 6 2 3 8 11 1980 1980 1990 2015 8 11 P426.6 A 7.86% 4 50 0.35 5 6 19 7 8 9 1 1906 2005

More information

南華大學數位論文

南華大學數位論文 南華大學 碩士論文 中華民國九十五年六月十四日 Elfin Excel I II III ABSTRACT Since Ming Hwa Yuan Taiwanese Opera Company started to cooperate with the Chinese orchestra, the problem of how the participation of Chinese music

More information

A VALIDATION STUDY OF THE ACHIEVEMENT TEST OF TEACHING CHINESE AS THE SECOND LANGUAGE by Chen Wei A Thesis Submitted to the Graduate School and Colleg

A VALIDATION STUDY OF THE ACHIEVEMENT TEST OF TEACHING CHINESE AS THE SECOND LANGUAGE by Chen Wei A Thesis Submitted to the Graduate School and Colleg 上 海 外 国 语 大 学 SHANGHAI INTERNATIONAL STUDIES UNIVERSITY 硕 士 学 位 论 文 MASTER DISSERTATION 学 院 国 际 文 化 交 流 学 院 专 业 汉 语 国 际 教 育 硕 士 题 目 届 别 2010 届 学 生 陈 炜 导 师 张 艳 莉 副 教 授 日 期 2010 年 4 月 A VALIDATION STUDY

More information

第六篇

第六篇 國 家 發 展 前 瞻 規 劃 委 辦 研 究 計 畫 - 產 業 人 力 供 需 評 估 ( 含 模 型 建 立 ) ( 第 二 年 度 計 畫 ) 編 號 : 國 家 發 展 前 瞻 規 劃 委 辦 研 究 計 畫 - 產 業 人 力 供 需 評 估 ( 含 模 型 建 立 ) 委 託 單 位 : 行 政 院 國 家 發 展 委 員 會 執 行 單 位 : 財 團 法 人 台 灣 經 濟 研

More information

Microsoft PowerPoint _代工實例-1

Microsoft PowerPoint _代工實例-1 4302 動態光散射儀 (Dynamic Light Scattering) 代工實例與結果解析 生醫暨非破壞性分析團隊 2016.10 updated Which Size to Measure? Diameter Many techniques make the useful and convenient assumption that every particle is a sphere. The

More information

ii

ii i ii iii iv Abstract This senior project is to use compute simulation to accomplish analysis and synthesis of Cam. The object of these focuses on three major partsthe first one is to establish the mathematical

More information

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang 20 6 2011 12 JOURNAL OF NATURAL DISASTERS Vol. 20 No. 6 Dec. 2011 1004-4574 2011 06-0094 - 05 200062 1949-1990 1949 1977 0. 8 0. 03345 0. 01243 30 100 P426. 616 A Risk analysis of flood disaster in Shanghai

More information

: 23 S00017242 1 -----------------------------------------------------------------------------1 -----------------------------------------------------------------------------3 -------------------------------------------------------------------7

More information

Improved Preimage Attacks on AES-like Hash Functions: Applications to Whirlpool and Grøstl

Improved Preimage Attacks on AES-like Hash Functions: Applications to Whirlpool and Grøstl SKLOIS (Pseudo) Preimage Attack on Reduced-Round Grøstl Hash Function and Others Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, Jian Zou March 20, 2012 Institute. of Software, Chinese Academy

More information

Monetary Policy Regime Shifts under the Zero Lower Bound: An Application of a Stochastic Rational Expectations Equilibrium to a Markov Switching DSGE

Monetary Policy Regime Shifts under the Zero Lower Bound: An Application of a Stochastic Rational Expectations Equilibrium to a Markov Switching DSGE Procedure of Calculating Policy Functions 1 Motivation Previous Works 2 Advantages and Summary 3 Model NK Model with MS Taylor Rule under ZLB Expectations Function Static One-Period Problem of a MS-DSGE

More information

864 现 代 药 物 与 临 床 Drugs & Clinic 第 31 卷 第 6 期 2016 年 6 月 of apoptosis related factors, decrease the incidence of adverse reactions, which is of great

864 现 代 药 物 与 临 床 Drugs & Clinic 第 31 卷 第 6 期 2016 年 6 月 of apoptosis related factors, decrease the incidence of adverse reactions, which is of great 现 代 药 物 与 临 床 Drugs & Clinic 第 31 卷 第 6 期 2016 年 6 月 863 曲 妥 珠 单 抗 联 合 多 西 紫 杉 醇 治 疗 Her-2 阳 性 乳 腺 癌 的 临 床 研 究 * 周 永 安, 刘 训 碧 黄 石 市 中 心 医 院 ( 普 爱 院 区 ) 乳 腺 肿 瘤 外 科, 湖 北 黄 石 435000 摘 要 : 目 的 探 析 注 射 用 曲

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

168 健 等 木醋对几种小浆果扦插繁殖的影响 第1期 the view of the comprehensive rooting quality, spraying wood vinegar can change rooting situation, and the optimal concent

168 健 等 木醋对几种小浆果扦插繁殖的影响 第1期 the view of the comprehensive rooting quality, spraying wood vinegar can change rooting situation, and the optimal concent 第 31 卷 第 1 期 2013 年 3 月 经 济 林 研 究 Nonwood Forest Research Vol. 31 No.1 Mar. 2013 木醋对几种小浆果扦插繁殖的影响 健 1,2 杨国亭 1 刘德江 2 (1. 东北林业大学 生态研究中心 黑龙江 哈尔滨 150040 2. 佳木斯大学 生命科学学院 黑龙江 佳木斯 154007) 摘 要 为了解决小浆果扦插繁殖中生根率及成活率低等问题

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

苗 栗 三 山 國 王 信 仰 及 其 地 方 社 會 意 涵 The Influences and Implications of Local Societies to Three Mountain Kings Belief, in Taiwan Miaoli 研 究 生 : 林 永 恩 指 導

苗 栗 三 山 國 王 信 仰 及 其 地 方 社 會 意 涵 The Influences and Implications of Local Societies to Three Mountain Kings Belief, in Taiwan Miaoli 研 究 生 : 林 永 恩 指 導 國 立 交 通 大 學 客 家 文 化 學 院 客 家 社 會 與 文 化 學 程 碩 士 論 文 苗 栗 三 山 國 王 信 仰 及 其 地 方 社 會 意 涵 The Influences and Implications of Local Societies to Three Mountain Kings Belief, in Taiwan Miaoli 研 究 生 : 林 永 恩 指 導 教

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

10384 200115009 UDC Management Buy-outs MBO MBO MBO 2002 MBO MBO MBO MBO 000527 MBO MBO MBO MBO MBO MBO MBO MBO MBO MBO MBO Q MBO MBO MBO Abstract Its related empirical study demonstrates a remarkable

More information

我国原奶及乳制品安全生产和质量安全管理研究

我国原奶及乳制品安全生产和质量安全管理研究 密 级 论 文 编 号 中 国 农 业 科 学 院 硕 士 学 位 论 文 我 国 原 奶 及 乳 制 品 质 量 安 全 管 理 研 究 Study on Quality and Safety Management of Raw Milk and Dairy Products in China 申 请 人 : 段 成 立 指 导 教 师 : 叶 志 华 研 究 员 张 蕙 杰 研 究 员 申 请

More information

18 A B S 17.44±1() ±6.26( ) 54.23±5.5( ) 6.42±1.51() m 30m t α =.05 ( )AB 1 5 (p>.05)( )AB 1 5 (p<.05)( )A (p>.05)( )B (p<.05)( )A B

18 A B S 17.44±1() ±6.26( ) 54.23±5.5( ) 6.42±1.51() m 30m t α =.05 ( )AB 1 5 (p>.05)( )AB 1 5 (p<.05)( )A (p>.05)( )B (p<.05)( )A B The Effect of Different Training Method on Quick Coordination ability in High School Female Soccer Players 18 A B S 17.44±1() 161.39±6.26( ) 54.23±5.5( ) 6.42±1.51() 15 60-90 30m 30m t α =.05 ( )AB 1 5

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

Cover

Cover 南 華 大 學 宗 教 學 研 究 所 碩 士 論 文 彰 化 市 角 頭 搶 轎 研 究 - 以 大 甲 媽 祖 過 境 為 例 Gangster and Palanquin-robbing in Mazu Pilgrimage Procession in Zhanghua, Taiwan. 研 究 生 : 鍾 秀 雋 指 導 教 授 : 張 珣 博 士 何 建 興 博 士 中 華 民 國 九 十

More information

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin iml8683-220v C / 0W EVM - pplication Notes iml8683 220V C 0W EVM pplication Notes Table of Content. IC Description... 2 2. Features... 2 3. Package and Pin Diagrams... 2 4. pplication Circuit... 3 5. PCB

More information

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; < ! # %& ( )! & +, &. / 0 # # 1 1 2 # 3 4!. &5 (& ) 6 0 0 2! +! +( &) 6 0 7 & 6 8. 9 6 &((. ) 6 4. 6 + ( & ) 6 0 &6,: & )6 0 3 7 ; ; < 7 ; = = ;# > 7 # 0 7#? Α

More information

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur iml8683-220v C / 4W Down-Light EVM - pplication Notes iml8683 220V C 4W Down Light EVM pplication Notes Table of Content. IC Description... 2 2. Features... 2 3. Package and Pin Diagrams... 2 4. pplication

More information

論 文 摘 要 本 文 乃 係 兩 岸 稅 務 爭 訟 制 度 之 研 究, 蓋 稅 務 爭 訟 在 行 訴 訟 中 一 直 占 有 相 當 高 的 比 例, 惟 其 勝 訴 率 一 直 偏 低, 民 87 年 10 月 28 日 行 訴 訟 法 經 幅 修 正 後, 審 級 部 分 由 一 級 一

論 文 摘 要 本 文 乃 係 兩 岸 稅 務 爭 訟 制 度 之 研 究, 蓋 稅 務 爭 訟 在 行 訴 訟 中 一 直 占 有 相 當 高 的 比 例, 惟 其 勝 訴 率 一 直 偏 低, 民 87 年 10 月 28 日 行 訴 訟 法 經 幅 修 正 後, 審 級 部 分 由 一 級 一 法 院 碩 士 在 職 專 班 碩 士 論 文 指 導 教 授 : 王 文 杰 博 士 兩 岸 稅 務 爭 訟 制 度 之 比 較 研 究 A comparative study on the system of cross-straits tax litigation 研 究 生 : 羅 希 寧 中 華 民 一 0 一 年 七 月 論 文 摘 要 本 文 乃 係 兩 岸 稅 務 爭 訟 制 度 之

More information

國立中山大學學位論文典藏.PDF

國立中山大學學位論文典藏.PDF 國 立 中 山 大 學 企 業 管 理 學 系 碩 士 論 文 以 系 統 動 力 學 建 構 美 食 餐 廳 異 國 麵 坊 之 管 理 飛 行 模 擬 器 研 究 生 : 簡 蓮 因 撰 指 導 教 授 : 楊 碩 英 博 士 中 華 民 國 九 十 七 年 七 月 致 謝 詞 寫 作 論 文 的 過 程 是 一 段 充 滿 艱 辛 與 淚 水 感 動 與 窩 心 的 歷 程, 感 謝 這 一

More information

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3 微 生 物 学 通 报 FEB 20, 2008, 35(2) 306~30 Microbiology 2008 by Institute of Microbiology, CAS tongbao@im.ac.cn 生 物 实 验 室 响 应 面 分 析 法 优 化 副 溶 血 性 弧 菌 生 长 条 件 刘 代 新 宁 喜 斌 * 张 继 伦 2 (. 200090) (2. 20202) 摘 要

More information

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip * - 1 1 2 3 1. 100124 2. 100124 3. 210018 - ABAQUS - DOI 10. 13204 /j. gyjz201511033 EXPERIMENTAL STUDY AND THEORETICAL MODEL OF A NEW TYPE OF STEEL-LEAD DAMPING Shen Fei 1 Xue Suduo 1 Peng Lingyun 2 Ye

More information

untitled

untitled Co-integration and VECM Yi-Nung Yang CYCU, Taiwan May, 2012 不 列 1 Learning objectives Integrated variables Co-integration Vector Error correction model (VECM) Engle-Granger 2-step co-integration test Johansen

More information

Microsoft PowerPoint - ryz_030708_pwo.ppt

Microsoft PowerPoint - ryz_030708_pwo.ppt Long Term Recovery of Seven PWO Crystals Ren-yuan Zhu California Institute of Technology CMS ECAL Week, CERN Introduction 20 endcap and 5 barrel PWO crystals went through (1) thermal annealing at 200 o

More information

A Study on the Relationships of the Co-construction Contract A Study on the Relationships of the Co-Construction Contract ( ) ABSTRACT Co-constructio in the real estate development, holds the quite

More information

A Study on JI Xiaolan s (1724-1805) Life, Couplets and Theories of Couplets 紀 曉 嵐 (1724 1724-1805 1805) 生 平 資 料 斠 正 及 對 聯 聯 論 研 究 LI Ha 李 夏 THE UNIVER

A Study on JI Xiaolan s (1724-1805) Life, Couplets and Theories of Couplets 紀 曉 嵐 (1724 1724-1805 1805) 生 平 資 料 斠 正 及 對 聯 聯 論 研 究 LI Ha 李 夏 THE UNIVER Title A study on Ji Xiaolan's (1724-1805) life, couplets and theories of couplets = Ji Xiaolan (1724-1805) sheng ping zi liao jiao zheng ji dui lian, lian lun yan jiu Author(s) Li, Ha; 李 夏 Citation Li,

More information

ABSTRACT ABSTRACT As we know the Sinology has a long history. As earily as 19 th century some works have already been done in this field. And among this the studies of lineages and folk beliefs in Southeast

More information

:

: Thesis on Court Banquet and Assemblage Poetry in Early Tang : I Abstract Abstract In the background of three different stages early Tang: Taizong GaozongWuhou and Zhongzong,this thesis mainly analyzes

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

2008年1月11日に岩手県釜石沖で発生した地震(M4.7)について

2008年1月11日に岩手県釜石沖で発生した地震(M4.7)について 2008 1 11 M4.7 On the M4.7 earthquake off Kamaishi, Iwate prefecture, Japan, on January 11, 2008. Graduate School of Science, Tohoku University 2008 1 11 M4.7 Matsuzawa et al. (2002) M-T M4.9 23Hz DD Waldhauser

More information

Abstract After over ten years development, Chinese securities market has experienced from nothing to something, from small to large and the course of

Abstract After over ten years development, Chinese securities market has experienced from nothing to something, from small to large and the course of 2003 MBA 600795 SWOT Abstract After over ten years development, Chinese securities market has experienced from nothing to something, from small to large and the course of being standardized. To all securities

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

致 谢 本 论 文 能 得 以 完 成, 首 先 要 感 谢 我 的 导 师 胡 曙 中 教 授 正 是 他 的 悉 心 指 导 和 关 怀 下, 我 才 能 够 最 终 选 定 了 研 究 方 向, 确 定 了 论 文 题 目, 并 逐 步 深 化 了 对 研 究 课 题 的 认 识, 从 而 一

致 谢 本 论 文 能 得 以 完 成, 首 先 要 感 谢 我 的 导 师 胡 曙 中 教 授 正 是 他 的 悉 心 指 导 和 关 怀 下, 我 才 能 够 最 终 选 定 了 研 究 方 向, 确 定 了 论 文 题 目, 并 逐 步 深 化 了 对 研 究 课 题 的 认 识, 从 而 一 中 美 国 际 新 闻 的 叙 事 学 比 较 分 析 以 英 伊 水 兵 事 件 为 例 A Comparative Analysis on Narration of Sino-US International News Case Study:UK-Iran Marine Issue 姓 名 : 李 英 专 业 : 新 闻 学 学 号 : 05390 指 导 老 师 : 胡 曙 中 教 授 上 海

More information

<4D6963726F736F667420576F7264202D2035B171AB73B6CBA8ECAB73A6D3A4A3B6CBA158B3AFA46CA9F9BB50B169A445C4D6AABAB750B94AB8D6B9EFA4F1ACE3A873>

<4D6963726F736F667420576F7264202D2035B171AB73B6CBA8ECAB73A6D3A4A3B6CBA158B3AFA46CA9F9BB50B169A445C4D6AABAB750B94AB8D6B9EFA4F1ACE3A873> 中 正 漢 學 研 究 2012 年 第 一 期 ( 總 第 十 九 期 ) 2012 年 6 月 頁 111~134 國 立 中 正 大 學 中 國 文 學 系 111 從 哀 傷 到 哀 而 不 傷 : 陳 子 昂 與 張 九 齡 的 感 遇 詩 對 比 研 究 * 丁 涵 摘 要 在 中 國 古 典 文 學 語 境 中, 一 個 主 題 的 奠 立 往 往 需 要 歷 時 彌 久, 而 這 本

More information

穨control.PDF

穨control.PDF TCP congestion control yhmiu Outline Congestion control algorithms Purpose of RFC2581 Purpose of RFC2582 TCP SS-DR 1998 TCP Extensions RFC1072 1988 SACK RFC2018 1996 FACK 1996 Rate-Halving 1997 OldTahoe

More information

Microsoft PowerPoint - talk8.ppt

Microsoft PowerPoint - talk8.ppt Adaptive Playout Scheduling Using Time-scale Modification Yi Liang, Nikolaus Färber Bernd Girod, Balaji Prabhakar Outline QoS concerns and tradeoffs Jitter adaptation as a playout scheduling scheme Packet

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

untitled

untitled LBS Research and Application of Location Information Management Technology in LBS TP319 10290 UDC LBS Research and Application of Location Information Management Technology in LBS , LBS PDA LBS

More information

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50% 38 2 2016 4 -- 1,2, 100190, 100083 065007 -- 0.25 mm 2.0 mm d 10 = 0.044 mm 640 3 300. Richardson--Zaki,,, O359 A doi 10.6052/1000-0879-15-230 EXPERIMENTAL STUDY OF FLUID-SOLID TWO-PHASE FLOW IN A VERTICAL

More information

Edge-Triggered Rising Edge-Triggered ( Falling Edge-Triggered ( Unit 11 Latches and Flip-Flops 3 Timing for D Flip-Flop (Falling-Edge Trigger) Unit 11

Edge-Triggered Rising Edge-Triggered ( Falling Edge-Triggered ( Unit 11 Latches and Flip-Flops 3 Timing for D Flip-Flop (Falling-Edge Trigger) Unit 11 Latches and Flip-Flops 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop 11.6 J-K Flip-Flop 11.7 T Flip-Flop 11.8 Flip-Flops with additional Inputs

More information

黑面琵鷺2015

黑面琵鷺2015 PG10402-0124 104-01-01 104 年 度 台 江 國 家 公 園 黑 面 琵 鷺 族 群 生 態 研 究 及 其 棲 地 經 營 管 理 計 畫 台 江 國 家 公 園 管 理 處 委 託 研 究 報 告 (104 年 ) ( 本 報 告 內 容 及 建 議, 純 屬 研 究 小 組 意 見, 不 代 表 本 機 關 意 見 ) 中 華 民 國 104 年 12 月 PG10402-0124

More information

國家圖書館典藏電子全文

國家圖書館典藏電子全文 A Study on the Job Stress and the Ways of Coping for the Director of Elementary School in the Middle Area of Taiwan Abstract This study aims at probing the subject current status as related to stress and

More information

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr 8 8 Technical Acoustics Vol., No. Aug., 8,,, (, 8) :,,,,,, : ; ; : TB;U.+ 9 : A : -(8)--- Noise and vibration tests for fuel cell vehicel and noise sources identification SHEN Xiu-min, ZUO Shu-guang, CAI

More information

<4D6963726F736F667420576F7264202D20B8DFB9B0B0D3B0D3F5E0D3A6C1A6CAB5B2E2D3EBBCC6CBE3BDE1B9FBB2EED2ECD4ADD2F2B7D6CEF62DD5C5B9FAD0C22E646F6378>

<4D6963726F736F667420576F7264202D20B8DFB9B0B0D3B0D3F5E0D3A6C1A6CAB5B2E2D3EBBCC6CBE3BDE1B9FBB2EED2ECD4ADD2F2B7D6CEF62DD5C5B9FAD0C22E646F6378> 高 拱 坝 坝 踵 应 力 实 测 与 计 算 结 果 差 异 原 因 分 析 张 国 新 周 秋 景 ( 中 国 水 利 水 电 科 学 研 究 院, 北 京 100038) 摘 要 : 坝 踵 应 力 是 关 系 到 混 凝 土 坝 是 否 开 裂 和 安 全 的 一 个 重 要 指 标, 不 管 是 用 结 构 力 学 法 还 是 有 限 元 法 都 能 计 算 出 坝 踵 有 一 定 的 拉

More information

E I

E I Research on Using Art-play to Construct Elementary School Students' Visual Art Aesthetic Sensibility ~Case of Da-Yuan Elementary School E I E II Abstract Research on Using Art-play to Construct Elementary

More information

南華大學數位論文

南華大學數位論文 南 華 大 學 生 死 學 系 碩 士 論 文 吳 晟 詩 文 作 品 中 生 命 觀 之 研 究 A Study On Life Viewpoint Of Wu S heng's Poems and Essays 研 究 生 : 施 玉 修 指 導 教 授 : 廖 俊 裕 博 士 中 華 民 國 102 年 5 月 14 日 謝 誌 感 謝 我 的 父 母, 賦 予 我 一 個 圓 滿 的 生

More information

Outline Speech Signals Processing Dual-Tone Multifrequency Signal Detection 云南大学滇池学院课程 : 数字信号处理 Applications of Digital Signal Processing 2

Outline Speech Signals Processing Dual-Tone Multifrequency Signal Detection 云南大学滇池学院课程 : 数字信号处理 Applications of Digital Signal Processing 2 CHAPTER 10 Applications of Digital Signal Processing Wang Weilian wlwang@ynu.edu.cn School of Information Science and Technology Yunnan University Outline Speech Signals Processing Dual-Tone Multifrequency

More information

Gerotor Motors Series Dimensions A,B C T L L G1/2 M G1/ A 4 C H4 E

Gerotor Motors Series Dimensions A,B C T L L G1/2 M G1/ A 4 C H4 E Gerotor Motors Series Size CC-A Flange Options-B Shaft Options-C Ports Features 0 0 5 5 1 0 1 0 3 3 0 0 SAE A 2 Bolt - (2) 4 Bolt Magneto (4) 4 Bolt Square (H4) 1.0" Keyed (C) 25mm Keyed (A) 1.0' 6T Spline

More information

Chapter 24 DC Battery Sizing

Chapter 24  DC Battery Sizing 26 (Battery Sizing & Discharge Analysis) - 1. 2. 3. ETAP PowerStation IEEE 485 26-1 ETAP PowerStation 4.7 IEEE 485 ETAP PowerStation 26-2 ETAP PowerStation 4.7 26.1 (Study Toolbar) / (Run Battery Sizing

More information

UDC The Policy Risk and Prevention in Chinese Securities Market

UDC The Policy Risk and Prevention in Chinese Securities Market 10384 200106013 UDC The Policy Risk and Prevention in Chinese Securities Market 2004 5 2004 2004 2004 5 : Abstract Many scholars have discussed the question about the influence of the policy on Chinese

More information

Medium induced modified Fragmentation Function for Multiple Parton Scattering

Medium induced modified Fragmentation Function for Multiple Parton Scattering Medium-Modified Fragmentation Function due to Multiple Parton Scattering Wei-ian Deng Sandong Universit Xin-Nian Wang LBNL & Sandong Universit Outline Introduction Modified fragmentation function in Brick

More information

論文封面

論文封面 6 21 1973 13 274 A Study of Children s Poetry by Lin Huan-Chang Chen, Chun-Yu National Taitung Teachers College The Graduate Institute of Children s Literature Abstract Lin Huan-Chang, the poet who devoted

More information

:1949, 1936, 1713 %, 63 % (, 1957, 5 ), :?,,,,,, (,1999, 329 ),,,,,,,,,, ( ) ; ( ), 1945,,,,,,,,, 100, 1952,,,,,, ,, :,,, 1928,,,,, (,1984, 109

:1949, 1936, 1713 %, 63 % (, 1957, 5 ), :?,,,,,, (,1999, 329 ),,,,,,,,,, ( ) ; ( ), 1945,,,,,,,,, 100, 1952,,,,,, ,, :,,, 1928,,,,, (,1984, 109 2006 9 1949 3 : 1949 2005, : 1949 1978, ; 1979 1997, ; 1998 2005,,, :,,, 1949, :, ;,,,, 50, 1952 1957 ; ; 60 ; 1978 ; 2003,,,,,,, 1953 1978 1953 1978,,,, 100,,,,, 3,, :100836, :wulijjs @263. net ;,, :

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

Microsoft Word - 論文封面-980103修.doc

Microsoft Word - 論文封面-980103修.doc 淡 江 大 學 中 國 文 學 學 系 碩 士 在 職 專 班 碩 士 論 文 指 導 教 授 : 呂 正 惠 蘇 敏 逸 博 士 博 士 倚 天 屠 龍 記 愛 情 敘 事 之 研 究 研 究 生 : 陳 麗 淑 撰 中 華 民 國 98 年 1 月 淡 江 大 學 研 究 生 中 文 論 文 提 要 論 文 名 稱 : 倚 天 屠 龍 記 愛 情 敘 事 之 研 究 頁 數 :128 校 系 (

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information